For ACB beam with elasticity module E, inertia
I;
a- Find the elastic curve equation by singularity method?
b- Find the reaction forces at point A.
c- Find the reaction force at point B.
pls 30 min
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
\&\Rightarrow Draming Free Body Diagram of Lean\begin{array}{l}\Rightarrow \quad F_{y}=0 \Rightarrow R_{B}+R_{A}+\omega \frac{L}{2}=\frac{2}{3} \omega+\frac{1}{2} 2 \omega \times L \\R_{B}+R_{A}+\frac{\omega L}{2}=\frac{2}{3} \omega+\omega L \\R A+R B=\frac{2}{3} \omega+\frac{\omega L}{2} \\\sum M_{A}=0 . \Rightarrow \frac{R_{B} \frac{B L}{2}}{}+M_{A}+\omega \frac{L}{2}\left(\frac{L}{4}\right)=\frac{2}{3} \omega\left(\frac{L}{2}\right)+\frac{1}{2} L \omega L \times \frac{7}{6} L \\\frac{3 R_{B} L}{2}+M A+\frac{\omega L^{2}}{8}=\frac{\omega L}{3}+\frac{7}{6} \omega L^{2} \\\frac{3 R B L}{2}+M A=\frac{\omega L}{3}-\frac{2}{24} \omega L^{2} \\\end{array}Using singularity functin\frac{d v}{d x}=-\frac{2 \omega}{L}\left\langle x-\frac{1}{2}\right\rangle+\omega\langle x\rangleIntergretuig\begin{array}{l}V(x)-V(0)=\frac{-2 \omega}{L}\left\langle\frac{\langle x-L / 2\rangle^{2}}{2}+\omega\langle x\rangle\right. \\\therefore N(x)=-\frac{2 \omega}{L} \frac{\langle x-L / 2\rangle^{2}}{2}+\omega\langle x\rangle+R_{A}\end{array}\Rightarrow \frac{d M}{d x}=v(x)Integreting fuam 0 to x\begin{array}{l}\Rightarrow M(x)-M(0)=\frac{-2 \omega}{L} \frac{\left\langle x-\frac{1}{2}\right\rangle^{3}}{6}+\frac{\omega\langle x\rangle^{2}}{2}+R A\langle x\rangle \\M(u)=\frac{-\frac{2 \omega}{L}\left\langle x-\frac{L}{2}\right\rangle^{3}+\frac{\omega\langle x\rangle^{2}}{2}+R A\langle x\rangle-M A}{6}\end{array}\begin{array}{l} E I \frac{d^{2} y}{d x^{2}}=0 M(x) \\\therefore \frac{d^{2} y}{d x^{2}}=\frac{1}{E I}\left[\frac{-\frac{2 \omega}{L}\left\langle x-\frac{L}{2}\right\rangle^{3}}{6}+\frac{\omega\langle x\rangle^{2}}{2}+R A\langle x\rangle-M A\right] \\\frac{d y}{d x}=\frac{1}{E I}\left[\frac{-\frac{2 \omega}{L}\left\langle x-\frac{L}{2}\right\rangle^{4}}{24}+\frac{\omega\langle x\rangle^{3}}{6}+\frac{R A\langle x\rangle^{2}}{2}-M_{A}\langle x\rangle+4\right]\end{array}At x=0, \frac{d y}{d x} or slape of curve is 0 , therefore 9=0y=\frac{1}{E I}\left[\frac{-\frac{2 \omega}{L}\left\langle x-\frac{L}{2}\right\rangle^{5}}{120}+\frac{\omega\langle x\rangle^{4}}{24}+\frac{R A\langle x\rangle^{3}}{6}-\frac{H A\langle x\rangle^{2}}{2}+c_{2}\right]At x=0, y deflection is 0 , therefore c_{2}=0y(x)=\frac{1}{E I}\left[\frac{-\frac{2 \omega}{L}\left\langle x-\frac{L}{2}\right\rangle^{5}}{120}+\frac{\omega\langle x\rangle^{4}}{24}+\frac{R_{A}\langle x\rangle^{3}}{6}-\frac{M A^{\langle}\langle x\rangle^{2}}{2}\right]\Rightarrow At x=\frac{3 L}{2}, y=0, putting x=\frac{31}{2} in equation of y(a)\Rightarrow 0=\frac{1}{E I}\left[\frac{-2 \omega L^{4}}{120}+\frac{81 \omega L^{4}}{384}+\frac{27 R A L^{3}}{48}-\frac{M A 9 L^{2}}{8}\right]0=\frac{-32 \omega L^{2}+405 \omega L^{2}+1080 R A L-2160 \mathrm{MA}}{1920}373 \omega L^{2}+1080 R A L-2160 M A=0Using equetion (1), (2) and (3)\begin{array}{l}\Rightarrow \text { Fran (B) }-R_{A}=\frac{\left(2160 M A-373 \omega L^{\prime}\right)}{1080 L} \\\text { Fram (2) }-R B=\left[\frac{\omega L}{3}-\frac{25}{24} \omega L^{\circ}-M A\right] \frac{L}{3 L}\end{array}Putting in equotion (1)\begin{array}{l}\text { RA } \frac{720 \omega}{1080}+\frac{38187 \omega L}{1080} \\\end{array}\begin{array}{l}R_{B}=\left\{\frac{\omega L}{3}-\frac{25}{24} \omega L^{2}-\left[\frac{12}{36} \omega L+\frac{1663}{1440} \omega L^{2}\right]\right\} \frac{2}{3 L} \\ R_{B}=\left[\frac{2 \omega}{9}-\frac{25}{36} \omega L-\frac{2 / \omega}{9}-\frac{1663 \omega L}{2160}\right] \\ R_{B}=\frac{-3163 \omega L}{2160} \\ y(u)=\frac{1}{E I}\left[\frac{-2 \omega}{L}\left\langle x-\frac{L}{2}\right\rangle+\frac{\omega\langle x\rangle^{4}}{120}+\frac{720 \omega}{24}+\frac{38187 \omega L}{1080}\langle x\rangle\right. \\ \left.-\frac{\omega L}{3}+\frac{1663 \omega L^{2}\langle x\rangle^{2}}{1440}\right] \\\end{array} ...