Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
In a cyclotron, centrifugal force needed for rotation is provided by the magnetic force. Thus \frac{m v^{2}}{r}=e v B \Rightarrow \frac{v}{r}=\frac{e B}{m} \Rightarrow f=\frac{1}{T}=\frac{v}{2 \pi r}=\frac{e B}{2 \pi m} (a) Now for a proton m=1.6726 \times 10^{-27} \mathrm{~kg} e=1.6 \times 10^{-19} Here B=1.5 \mathrm{~T}. Thus frequency of oscillation is f=\frac{e B}{2 \pi m}=\frac{1.6 \times 10^{-19} \times 1.5}{2 \pi \times 1.6726 \times 10^{-27}} \mathrm{~Hz}=2.284 \times 10^{7} \mathrm{~Hz} (b) We know that \frac{m v^{2}}{r}=e v B \Rightarrow p=m v=e B r \therefore K E=\frac{p^{2}}{2 m}=\frac{e^{2} B^{2} r^{2}}{2 m} Here r=0.7 \mathrm{~m}. Thus kinetic energy is K E=\frac{e^{2} B^{2} r^{2}}{2 m}=\frac{\left(1.6 \times 10^{-19}\right)^{2} \times 1.5^{2} \times 0.7^{2}}{2 \times 1.6726 \times 10^{-27}} \mathrm{~J}=8.437 \times 10^{-12} \mathrm{~J}   ...