In the association of resistors on the side,
an ideal voltage source of 10 V has been connected
between points A and B. Determine:
(a) The equivalent resistance of the circuit.
(b) The total electrical current in the circuit.
(c) The potential difference across the 7 ohm resistor
terminals.
(d) The electric current through the 4 ohm resistor.
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
3,9 are in geriepR_{1}=3+9=12 \Omega4, R_{1} are in parallel10R_{2}=\frac{(4)(12)}{4+12}=3 \Omega\begin{aligned}R_{\text {eq }} & =5 \|(3+7) \\& =\frac{(5)(10)}{5+10} \\R_{e q} & =3.333 \Omega \\I_{T} & =\frac{10}{R_{e q}}=\frac{10}{3.333} \\I_{T} & =3 \mathrm{~A}\end{aligned} 10\begin{array}{l}79 \\\end{array}Apply mesh analysis for loop is\begin{aligned}-10+5\left(i_{1}-i_{2}\right) & =0 \\5 i_{1}-5 i_{2} & =10 \rightarrow \text { (1) }\end{aligned}Apply mesh analysis for loop i2\begin{array}{c}5\left(i_{2}-i_{1}\right)+4\left(i_{2}-i_{3}\right)+7 i_{2}=0 \\16 i_{2}-5 i_{1}-4 i_{3}=0 \rightarrow \text { (2) }\end{array}Apply mesh analysis for loop i_{3}\begin{array}{c}4\left(i_{3}-i_{2}\right)+3 i_{3}+9 i_{3}=0 \\16 i_{3}-4 i_{2}=0 \rightarrow(3\end{array}solving eq (1), (2) & (3)\begin{array}{l}i_{1}=3 \mathrm{~A} \\i_{2}=1 \mathrm{~A} \\i_{3}=0.25 \mathrm{~A}\end{array}v_{7}=7 vCurrent through 4 \Omega \quad i_{4}=i_{2}-i_{3}=1-0.25i_{4}=0.75 \mathrm{~A} ...