Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Please like the answer.  If u have any doubt, please comment below TQ Let 'to be temp when body discovered ' t_{2}^{\prime} be temp after two hoursGiven to =82^{\circ} \mathrm{F}\text { s } t_{2}=72^{\circ} \mathrm{F}8 temperatuse of suraindigs \left(t_{5}\right)=65^{\circ} \mathrm{F}W.K.T\begin{aligned}T(t) & =\left(t_{0}-t_{s}\right) e^{k t}+t_{s} \\& =(82-65) e^{k t}+65 \\T(t) & =n e^{k t}+65 \rightarrow \text { (1) }\end{aligned}if t=2\begin{array}{l}\Rightarrow T(2)=17 e^{2 K}+65 \\72=17 e^{2 k}+65 \Rightarrow m e^{2 k}=7 \\\Rightarrow e^{2 x}=\frac{7}{17} \\e^{x}=\sqrt{7 / 17} \\\therefore T(t)=17 \cdot\left(\frac{7}{17}\right)^{t / 2}+65 \rightarrow(2) \\\end{array}giventhat bedy temp generat T(t)=98.6 \mathrm{~F}\begin{aligned}\Rightarrow 98.6 & =\pi\left(\frac{7}{17}\right)^{+12}+65 \\\Rightarrow \ln \left(\frac{87}{17}\right)^{+1 / 2} & =\ln \left(\frac{98.6-65}{17}\right) \\\Rightarrow t & =\frac{\ln 1.976}{\ln (7 / 7)} \\& =-1.535\end{aligned}given body is found atroon (1,Pm)\text { Time of death }=12-1.5\simeq 10: 30 Am (approbtratily) ...