Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

Please like the answer.  If u have any doubt, please comment below TQ Let 'to be temp when body discovered ' t_{2}^{\prime} be temp after two hoursGiven to =82^{\circ} \mathrm{F}\text { s } t_{2}=72^{\circ} \mathrm{F}8 temperatuse of suraindigs \left(t_{5}\right)=65^{\circ} \mathrm{F}W.K.T\begin{aligned}T(t) & =\left(t_{0}-t_{s}\right) e^{k t}+t_{s} \\& =(82-65) e^{k t}+65 \\T(t) & =n e^{k t}+65 \rightarrow \text { (1) }\end{aligned}if t=2\begin{array}{l}\Rightarrow T(2)=17 e^{2 K}+65 \\72=17 e^{2 k}+65 \Rightarrow m e^{2 k}=7 \\\Rightarrow e^{2 x}=\frac{7}{17} \\e^{x}=\sqrt{7 / 17} \\\therefore T(t)=17 \cdot\left(\frac{7}{17}\right)^{t / 2}+65 \rightarrow(2) \\\end{array}giventhat bedy temp generat T(t)=98.6 \mathrm{~F}\begin{aligned}\Rightarrow 98.6 & =\pi\left(\frac{7}{17}\right)^{+12}+65 \\\Rightarrow \ln \left(\frac{87}{17}\right)^{+1 / 2} & =\ln \left(\frac{98.6-65}{17}\right) \\\Rightarrow t & =\frac{\ln 1.976}{\ln (7 / 7)} \\& =-1.535\end{aligned}given body is found atroon (1,Pm)\text { Time of death }=12-1.5\simeq 10: 30 Am (approbtratily) ...