Question Solved1 Answer Justify whether x2 + y2 = 3xy has a horizontal tangent at (2, 4). No, because 3y -3x2 70 at (2,4) 2y-3x Yes, because 3y - 3x2 2y - 3x oat (2,4) 3x2-12 Yes, because 3-2y 0 at (2,4) 3x2 - 12 No, because 3-2y 70 at (2,4)

XGBJ8U The Asker · Calculus

Transcribed Image Text: Justify whether x2 + y2 = 3xy has a horizontal tangent at (2, 4). No, because 3y -3x2 70 at (2,4) 2y-3x Yes, because 3y - 3x2 2y - 3x oat (2,4) 3x2-12 Yes, because 3-2y 0 at (2,4) 3x2 - 12 No, because 3-2y 70 at (2,4)
More
Transcribed Image Text: Justify whether x2 + y2 = 3xy has a horizontal tangent at (2, 4). No, because 3y -3x2 70 at (2,4) 2y-3x Yes, because 3y - 3x2 2y - 3x oat (2,4) 3x2-12 Yes, because 3-2y 0 at (2,4) 3x2 - 12 No, because 3-2y 70 at (2,4)
See Answer
Add Answer +20 Points
Community Answer
KXBP37 The First Answerer
See all the answers with 1 Unlock
Get 4 Free Unlocks by registration

Given x^(3)+y^(2)=3xyNow, differeniate w.r. to y.{:[3x^(2)+2y(dy)/(dx)=3x(dy)/(dx)+3y],[=>quad(dy)/(dx)(2y-3x)=3y-3x^(2)],[=>quad(dy)/(dx)=(3y-3x^(2))/(2y-3x)],[ ... See the full answer