Knowing that the bending moment in the reinforced concrete beam show is +150 kip-ft and the modulus of elasticity is E_conc = 3.75 times 10^6 psi for the concrete and E_st = 30 times 10^6 psi for the steel, determine (a) the stress in the steel, (b) the maximum stress in the concrete.

Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

{:[x=(E_(s))/(epsilon_(c))=(30 xx10^(6)ps^(@))/(3.75 xx10^(6)psi)=8.0],[A_(s)=4[(pi)/(4)(1)^(2)]=3.1416in^(2)","nA_(s)=25.10m^(2)]:}Locale the meutral axisLocate the neutral axis{:[24 xx6(x+3)+12 x((x)/(2))-25.133(27.5-6-3)=0],[144 x+432+6x^(2)-691.157+150.798],[+25.133 x=0],[6x^(2)+[69.133-108.359=0],[x=0","626quad x=-28.51],[lambda_(3)=22.5-8-0.626=],[d_(1)=20.874in.]:}{:[I_(1)=(b_(1)h_(1)^(3))/(12)+A_(1)d_(1)^(2)],[=(1)/(12)(24)(6)^(3)+(24)(6)(3.626)^(2)],[=432+1893.294],[I_(1)=2325.294inch4],[I_(2)=(1)/(3)b_(2)9^(2)=(1)/(3)(12)(0.62)^(3)],[=0.94m^(4)],[I_(3)=xA_(3)d_(3)^(2)],[=(25.133)(20.894)^(2)],[=10951.04m^(4)],[I=I_(1)+I_(2)+I_(3)=1327.315m4]:}{:[sigma=(-nMy)/(I)quad" where "M=+150kyet],[=1800kg" mon "]:}(a) steet{:[x=8.0quady_(2)-20.87 yin],[sigma_(s)=(-(8.0)(1800)-(220.87 y))/(13277.315)],[=22.679Ksi],[" crete "x=1.quad y=6+0.626=6.626m]:}(b) Cmcrete x=1,y=6+0.626=6.626msigma_(c)=(-0.0)(1800)xx6.026)/(13277.315)=-0.898kF ...