Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Sol:--(1)Given that,F\left(f^{\prime}\right)=\left\{\begin{array}{ll}i\left(3 \omega+2 \omega^{2}\right) & |\omega|<4, \\0 & |\omega|>4\end{array}\right.(a) To find an expression for \hat{f}(\omega) in terms of unit step function 4 ?Now let us take the given function,\begin{array}{l}F\left(f^{\prime}\right)=\left\{\begin{array}{ll}i\left(3 \omega+2 \omega^{2}\right) & |\omega|<4, \\0 & |\omega|>4 .\end{array}\right. \\\Rightarrow(i \omega) F(f)=\left\{\begin{array}{cc}i \omega(3+2 \omega), & |\omega|<4 \\0, & |\omega|>4\end{array}\right. \\\end{array}we know that (iw) F(f)=\hat{f}(\omega).\Rightarrow \hat{f}(\omega)=\left\{\begin{array}{clc}0, & -\infty & <\omega<-4 \\3+2 \omega, & -4<\omega<4 \\0, & 4<\omega<\infty\end{array}\right.The unit step function in terms of u is,u(\omega-a)=\left\{\begin{array}{ll}0, & \omega<a \\1, & \omega>a\end{array}\right.Now,\begin{aligned}& \hat{f}(\omega)=(3+2 \omega-0) u(\omega-(-4))+(0-(3+2 \omega)) u(\omega-4) \\\Rightarrow & \hat{f}(\omega)=(3+2 \omega) u(\omega+4)+[-(3+2 \omega) u(\omega-4)] \\\Rightarrow & \hat{f}(\omega)=(3+2 \omega)[u(\omega+4)-u(\omega-4)] \\\Rightarrow & \hat{f}(\omega)=(3+2 \omega)[u(\omega+4 u-4(\omega+4 u]\end{aligned}\begin{array}{l}\Rightarrow \hat{f}(\omega)=(3+2 \omega) 8 u \\\quad \therefore \hat{f}(\omega)=8 u(3+2 \omega)\end{array}(2)(b) To find the inverse fourier transform of \hat{f}(\omega) ?Here given the function as,F^{-1}(\hat{f}(\omega))=\sqrt{\frac{2}{\pi}}\{F(x) \sin (4 x)+G(x) \cos (4 x)\} .We know that,\begin{array}{l} F^{-1}(\hat{f}(\omega))=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega x} d \omega \\=\frac{1}{\sqrt{2 \pi}} \int_{-4}^{4}(3+2 \omega) e^{i \omega x} d \omega \\=\frac{1}{\sqrt{2 \pi}}\left[\frac{-(i x(2 \omega+3)-2) \cdot e^{i \omega x}}{x^{2}}\right]+c \\=\frac{-2 i x(2 \omega+3) e^{i \omega x}}{\sqrt{2 \pi} x^{2}}+c \\=\frac{-2 i(x \omega+i) i x \omega}{x^{2}}-\frac{3 i e^{i \omega x}}{x} \\=\frac{(11 x+2 i) \sin 4 x+(2-1) i x) \cos 4 x}{x^{2}}-\frac{(5 x-2 i) \sin 4 x+(5 x i+2) \cos 4 x}{x^{2}} \\\frac{\sqrt{2 \pi}}{\sqrt{2 \pi}}\end{array}(3)\begin{array}{l}=[\sin 4 x][11 x+2 i-5 x+2 i]+[\cos 4 x][\not-11 i x-5 i x-\not 2] \\\sqrt{2 \pi} x^{2} \\=\frac{(6 x+4 i) \sin 4 x-16 i x \cos 4 x}{\sqrt{2 \pi} x^{2}} \\F^{+}\{\hat{f}(\omega)\}=\frac{1}{\sqrt{2 \pi} x^{2}}\{F(x) \sin 4 x+G(x) \cos 4 x\} \\\end{array}Here, F(x)=\frac{6 x+4 i}{\sqrt{2 \pi} x^{2}} and\begin{array}{l}G(x)=\frac{-16 i x}{\sqrt{2 \pi} x^{2}}=\frac{-16 i}{\sqrt{2 \pi} x} \\\Rightarrow G(x)=\frac{-16 i}{\sqrt{2 \pi} x}\end{array} ...