Let Y denote a random variable that has a Poisson distribution with mean λ = 6. (Round your answers to three decimal places.)
(a) Find P(Y = 9).
(b) Find P(Y ≥ 9).
(c) Find P(Y < 9).
(d) Find P(Y ≥ 9|Y ≥ 6).
 Y denotes a random variable that has a Poisson distribution with mean λ = 6 The probability of Y=y is P(Y=y)=(lambda^(y)e^(-lambda))/(y!)=(6^(y)e^(-6))/(y!),quad y=0,1,dots (a) Find P(Y = 9). P(Y=9)=(6^(9)e^(-6))/(9!)=0.0688 ans: P(Y=9) = 0.069 (b) Find P(Y ≥ 9). {:[P(Y >= 9)=1-P(Y < 9)],[=1-(P(Y=0)+P(Y=1)+dots+P(Y=8))],[=1-((6^(0)e^(-6))/(0!)+(6^(1)e^(-6))/(1!)+dots+(6^(8)e^(-6))/(8!))],[=1-(0.0025+0.0149+0.0446+0.0892+0.1339+0.1606+0.1606+0.1377+0.1033)],[=0.1528]:} ans: P(Y ≥ 9) = 0.153 (c) Find P(Y < 9) {:[P(Y < 9)=1-P(Y >= 9)],[=1-0.1528" from part "b],[=0. ... See the full answer