Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
A)-Assumptions:- 1. Steady ffow 2 KERP.E changes neglect 3. There is no work interactions u - device is adiabatc properfics:- Nute that T<T_{\text {sat } Q \text { Jook-1a }}=133.52^{\circ} \mathrm{C}, the cold water stean and the mixture exists as a campressed liqvid, which can be aproximated as satuvated (igid at the given temperature.so\begin{array}{l}h_{t}=h_{f \odot 2_{a}^{\circ}}=83.91 \mathrm{~kJ} / \mathrm{kg} \\h_{3}=h_{f @ 60^{\circ}}=251.18 \mathrm{~kJ} / \mathrm{kg}\end{array}and\left.\begin{array}{l}P_{2}=300 \mathrm{kra} \\T_{2}=300^{\circ} \mathrm{c}\end{array}\right\} h_{2}=3069.6 \mathrm{k \sigma} k gMass batance:-\begin{array}{l}\Rightarrow \dot{m}_{\text {in }}=\dot{m}_{0}+\vec{\Rightarrow} \Rightarrow \dot{m}_{1}+\dot{m}_{2}=\dot{m}_{3} . \pi_{2}=30 \% \\\end{array}energy bolance:-\hat{E}_{\text {in }}-E_{\text {out }}=\Delta E_{\text {syst }}=0 \text { (steads state) }\begin{array}{l}\dot{E}_{\text {in }}=\dot{E}_{\text {out }} \\\dot{m}_{1} h_{1}+\dot{m}_{2} h_{2}=\dot{m}_{3} h_{3} \quad(\sin C e Q=\omega=\Delta k e=\Delta P E=\end{array}combining (1) > (2), we get in h_{1}+\dot{m}_{2} h_{2}=\left(\dot{m}_{1}+m_{2}\right) h_{3}\begin{aligned}\dot{m}_{2} & =\frac{h_{1}-h_{3}}{h_{3}-h_{2}} \dot{m}_{1} \\& =\frac{83.91-251.18}{251.18-3009.6} \times 1.8=0.107 \mathrm{~kg} / \mathrm{s} \\\therefore \dot{m}_{2} & =0.107 \mathrm{~kg} / \mathrm{s}\end{aligned}pleoge rate themibs up, if you likett. ...