undefined
co(g)+d_(2)(g)rarrcod_(2)(g)Rate of the above reaction from the meehanism can be written as," rate "=k_(3)[cod][cl_(2)]Now Applying S.S. a (Steady State approximation) on [cod],{:[(d[cod])/(dt)=0],[" or) "k_(2)[d][co]-k_(-2)[cod]-k_(3)[cod][Cl_(2)]],[=0-(2)],[" on, "[cod]=(k_(2)[Cl][co])/(k_(-2)+k_(3)[dl_(2)])-(3)]:}Applying S.s.a on [Cl](d[a])/(dt)=0on, k_(1)[d_(2)]-k_(-1)[a]^(2)-k_(2)[a][co] +k_(3)[cod][a_(2)]-k_(4)[a]^(2)=0or) k_(1)[d_(2)]-k-1[U]^(2)-(k_(2)[d][co]-k_(3)[cod[d_(2)]):} -k_(4)[d]^(2)=0Ming equation (2){:[k_(1)[d_(2)]-k_(-1)[a]^(2)-k_(-2)[cod]-k_(4)[d]^(2)=0],[" on, "[a]=((k_(1)[d_(2)]-k_(-2)[cod])/(k_(-1)+k_(4)))(1_(2))/(2)-(4)]:}{:[k-2(:(:k_(1):}],[" or, "k_(1)[d_(2)] > k_(-2)[cod]],[[Ul]=((k_(1)[Cl_(2)])/(k_(-1)+k_(4)))^(k_(2))-(5)]:}Putting th ... See the full answer