Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Soln\begin{array}{l}=\left(\frac{T L}{G J}\right)_{1}+\left(\frac{T L}{G J}\right)_{2} \\=\frac{50 \times 1.8 \mathrm{Nm} \times \mathrm{m}}{37 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} \times \frac{\pi \times\left(32 \times 10^{-3}\right)^{4}}{32} \times \mathrm{m}^{4}} \\+\frac{50 \times 0.8 \mathrm{~N} \times \operatorname{m\times m}}{26 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} \times \frac{\pi \times d_{2}^{4}}{32} \mathrm{~m}^{4}} \\\end{array}Note\theta_{C A}=0.02363+\frac{50 \times 0.8 \times 32}{26 \times 10^{9} \times \pi \times d_{2}^{4}}Given \theta_{C A}=3^{\circ}\begin{array}{l}=\frac{3 \times \pi}{180} \text { radians } \\=0.05236 .\end{array}\begin{array}{l} \therefore 0.05236=0.02363+\frac{1.57 \times 10^{-8}}{d_{2}^{4}} \\0.02873=\frac{1.57 \times 10^{-8}}{d_{2}^{4}} \\d_{2}^{4}=5.46 \times 10^{-7} d_{2}=0.02719 \mathrm{~m} \\\therefore d_{2}=27.19 \mathrm{~mm}\end{array}NOTE:as the same torque is transmitted through the whole steppedshaft, the angle rotation will get added from section to sectiontill the end i.e the support ...