Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution :: Ans: Given that \beta=100 and V_{A}=100 \mathrm{~V}Each transistor is biased at I_{E}=0.5 \mathrm{~mA}\begin{array}{l}\therefore r_{e l}=r_{e 2}=\frac{V_{T}}{I_{E}}=\frac{25 \mathrm{mV}}{0.5 \mathrm{~mA}}=50 \Omega, g_{\mathrm{m}}=\frac{1}{r_{e}}=20 \mathrm{~mA} / \mathrm{V} \\\therefore V_{A}=100 \mathrm{~V} \text { and } I_{E}=0.5 \mathrm{~mA} ; Y_{0}=\frac{V_{A}}{I_{E}}=\frac{100}{0.5}=200 \mathrm{k} \Omega \\\end{array}Differential Half ciraut * Common mode Half circuitGain A_{V}= Total Resistance in the collectorsTotal Resistance in the EmittersDifferential gain A_{d}=\frac{2\left(R_{c} \| R_{L / 2}\right)}{2\left(r_{e}+R_{E / 2}\right)}=\frac{2(10 \| 10) \mathrm{K}}{2(0.05+0.15) \mathrm{K}}\therefore \quad A_{d}=25 \mathrm{~V} / \mathrm{V}Differential Input resistance R id:\begin{aligned}R_{\text {id }} & =2\left((\beta+1)\left(r_{e}+R_{E} / 2\right)\right)=2(101)(50+150)=40.4 \mathrm{kn} \\& \therefore \quad R_{i d}=40.4 \mathrm{k} \Omega .\end{aligned}Common mode gain with R_{c} have 1 \% tolerance\begin{array}{l}\therefore \quad A_{\mathrm{cm}}=5 \times 10^{-4} \mathrm{~V} / \mathrm{V} \quad\left[\because \frac{\Delta R_{c}}{R_{c}}=1 \%=0.01\right] \\\end{array}common mode input resistance Ricm:\left.\begin{array}{rl}R_{i c m} & =(B+1)\left[\frac{r_{e}}{2}+\left(\frac{R_{E E}}{2} \| \frac{r_{0}}{2}\right)\right]_{V_{i c m}} \\& =(101)\left(25+\left(\frac{200 \mathrm{k}}{2} \| \frac{200 \mathrm{k}}{2}\right)\right. \\\therefore R_{i c m} & =50.525 \mathrm{M} \Omega\end{array}\right\} PLEASE RATE THE ANSWER POSITIVELY BY GIVING THUMBS UP ...