Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
solution please give me like..its really needs to write more questions,,thanks Answer:-Given that \beta=100 and V_{A}=100 \mathrm{~V}Each transisto is biased at E_{E}=0.5 \mathrm{~mA}\begin{array}{l}\text { Each transistou is blased at IE } \\\gamma_{e_{1}}=\gamma_{e 2}=\frac{V_{T}}{I_{E}}=\frac{25 \mathrm{mV}}{0.5 \mathrm{~mA}}=50 \Omega, g_{m}=\frac{1}{\gamma_{e}}=20 \mathrm{mall} \\V_{A}=100 \mathrm{~V} \text { and } I_{E}=0.5 \mathrm{~mA} ; \gamma_{0}=\frac{V_{A}}{I E}=\frac{100}{0.5}=200 \mathrm{k} \Omega\end{array}\rightarrow Differential halt circcit\leftrightarrow common mode halt circutGain A V=\frac{\text { Total Resistance in the collectors }}{\text { rotal Resistance in the enitters }}Ditterential gain A d=\frac{2(R c \| R L / 2)}{2(\gamma e+R E / 2)}=\frac{2(10 \| 10) \mathrm{K}}{2(0.05+0.15) \mathrm{K}}A_{d}=25 \mathrm{~V} / \mathrm{V}Ditterential input resistance Rid\begin{aligned}\text { Rid }=2\left((\beta+1)\left(\gamma_{e}+R E 1_{2}\right)\right) & =2(108)(50+150) \\& =40.4 \mathrm{k} \Omega \\\text { Rid } & =40.4 \mathrm{k} \Omega\end{aligned}\rightarrow common mode gain with R_{C} have (Y, tolesance\begin{array}{r}A_{c M}=\frac{\Delta R C}{R_{C}} \cdot \frac{R_{C}}{R_{E E}}=\frac{\Delta R_{C} \cdot R_{C}}{R_{C} R_{E E}}=\frac{10}{200}(0.01) \\=5 \times 10^{-4} \\A_{C M}=5 \times 10^{-4} \mathrm{~V} / \mathrm{V} \quad\left[\because \frac{\Delta R_{C}}{R_{C}}=1 \%=0.01\right]\end{array}\rightarrow common mode input resistance Ricm:\operatorname{Ricm}=(\beta+1)\left[\frac{r_{e}}{2}+\left(\frac{R_{E E}}{2} \| \frac{r_{0}}{2}\right)\right]\begin{array}{l}=(101)\left(25+\left(\frac{200 \mathrm{k}}{2} \mid 1 \frac{200 \mathrm{k}}{2}\right)\right. \\R_{i c m}=50.525 \mathrm{~m} \Omega\end{array} please dont forget to give like.. if u have any doubts..please comment me,,thanks ...