Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
F(s)=\frac{10 s-12}{s(s+1)\left(s^{2}+1\right)}Then \frac{10 s-12}{s(s+1)\left(s^{2}+1\right)}=\frac{A}{s}+\frac{B}{s+1}+\frac{c s+D}{s^{2}+1}\begin{array}{l}10 s-12=A(s+1)\left(s^{2}+1\right)+B\left(s\left(s^{2}+1\right)+s(s+1)(c s+D)\right. \\10 s-12=A\left(s^{3}+s^{2}+s+1\right)+B\left(s^{3}+s\right)+\left(s^{2}+s\right)(c s+D) \\10 s-12=A\left(s^{3}+s^{2}+s+1\right)+B\left(s^{3}+s\right)+\left(C s^{3}+D s^{2}+C s^{2}+D s\right)\end{array}Eomparing coefficient of 5^{\circ}-12=A+0+0]compute coefficient of s^{3}\begin{array}{r}A+B+C=0 \\{[B+C=12]}\end{array}comparing coefficient of s^{2}\begin{array}{l}0=A+C+D \\C+D=12 \\\text { or }\left[\begin{array}{l}D=12-C \\B=12-C\end{array}\right] \\\end{array}comparing coefficient of s^{\prime}\begin{array}{l}10=A+B+D \\10=-12+12-C+12-C \\10=12-2 C \\2 C=12-10 \\{[C=1]} \\{[B=D=11]}\end{array}Then,\begin{array}{l}F(s)=\frac{-12}{s}+\frac{11}{s+1}+\frac{s+11}{s^{2}+1} \\F(s)=-\frac{12}{s}+\frac{11}{s+1}+\frac{s}{s^{2}+1}+\frac{21}{s^{2}+1}\end{array}Taking inverse laplace transform on both side\begin{array}{l}e^{-1} F(s)=-12 e^{-1}\left(\frac{1}{s}\right)+11 L^{-1}\left(\frac{1}{s+1}\right)+e^{-1}\left(\frac{s}{s^{2}+1}\right)+e^{-1}\left(\frac{11}{s^{2}+1}\right) \\\text { using, }\left\{\begin{array}{l}e^{-1} \frac{b}{s^{2}+b^{2}}=\sin b t \\t^{-1} \frac{s}{s^{2}+b^{2}}=\cos b t\end{array}\right. \\e^{-1} F(s)=-22 \times 1+11 e^{-t}+\cos (1 \times t)+21 \sin (1 \times t) \\e^{-1}\left(\frac{10 s-12}{\left(s^{2}+s\right)\left(s^{2}+1\right)}\right)=-12+11 e^{-t}+\cos t+12 \sin t \\\end{array}(5) \operatorname{l}^{-1}\left(\frac{s}{(s-2)^{2}+q}\right)\text { Let, } \begin{aligned}G(s) & =\frac{s-2+2}{(s-2)^{2}+9} \\G(s) & =\frac{s-2}{(s-2)^{2}+9}+\frac{2}{\left(s^{2}-2\right)^{2}+9} \\G(s) & =\frac{s-2}{(s-2)^{2}+3^{2}}+\frac{2}{3} \times \frac{3}{(s-2)^{2}+3^{2}}\end{aligned}taking inverse laplace tansform on both sideusing,\begin{array}{l}t^{-1} \frac{s-a}{(s-a)^{2}+b^{2}}=e^{a t} \cos b t \\t^{-1} \frac{b}{(s-a)^{2}+b^{2}}=e^{-a t} \sin b t\end{array}Therefor, t^{-1}\left(\frac{s}{(s-2)^{2}+9}\right)=e^{2 t} \cos 3 t+\frac{2}{3} e^{2 t} \sin 3 tI^{-1}\left\{\frac{s}{(s-2)^{2}+9}\right\}=e^{2 t}\left(\cos 3 t+\frac{2}{3} \sin 3 t\right) ...