Total charse =O/length of rod =e=> linear charse densidy,lambda=(Q)/(L)(A)Take an element of of the rodcharse on element, dq=ddxElectric field at P due to dqdE=(kdz)/((gamma-x)^(2))=(kddx)/((gamma-x)^(2))Net electric field at P{:[E=int dE=int_(-(L)/(2))^((L)/(2))(kddx)/((gamma-x)^(2))],[E=kdint_(-(L)/(2))^((L)/(2))(dx)/((x-x)^(2))],[=kd[(1)/(-(x-x)xx(-1))]_(-(L)/(2))^(L//2)]:}{:[=k lambda[(1)/(gamma-(L)/(2))-(1)/(gamma-(-(L)/(2)))]],[=k lambda[(2)/(2gamma-L ... See the full answer