Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution:given, I(t)=200 e^{0.1 t}(a) To find capital formation from the end of the 3^{\text {rd }} year to end of the 10^{\text {th }} year so\begin{aligned}& \int_{3}^{10} 200 e^{0.1 t} d t \\= & 200 \int_{3}^{10} e^{0.1 t} d t \\= & \left.200 \frac{e^{0.1 t}}{0.1}\right|_{3} ^{10} \\= & 200\left[\frac{e^{0.1(10)}}{0.1}-\frac{e^{0.1(3)}}{0.1}\right] \\= & 200\left[\frac{e^{1}}{0.1}-\frac{0.3}{0.1}\right]=200\left[\frac{e^{1}-e^{0.3}}{0.1}\right] \\= & 2000\left[e^{1}-e^{0.3}\right] \\= & 2000[1.3684230208830] \\= & 2736.846\end{aligned}(b)To find Number of years required before the capital stock exceeds \$ 50000\begin{aligned}& \int_{0}^{t} 200 e^{0.1 t} d t=50000 \\= & 200\left[\frac{e^{0.1 t}}{0.1}\right]_{0}^{t}=50000 \\= & 200\left[\frac{e^{0.1 t}}{0.1}-\frac{e^{0.1(0)}}{0.1}\right]=50000\end{aligned}\begin{array}{l}=200\left[\frac{e^{0.1 t}-e^{0}}{0.1}\right]=50000 \\=2000\left[e^{0.1 t}-1\right]=50000 \\=e^{0.1 t}-1=25 \\e^{0.1 t}=25+1 \\e^{0.1 t}=26 \text { on bottsides }\end{array}Apply natural log on bottsides\begin{aligned}\ln \left(e^{0.1 t}\right) & =\ln (26) \\0.1 t & =\ln (26) \\0.1 t & =3.2580965380214 \\t & =32.580965380214 \\t & =32.58\end{aligned}The number of years required before the capital stock exceeds \$ 50000 is 32.58 years ...