Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Sul { }^{\wedge}By Method of Sections:-(1) 1 S K N(1) ~ U K N,(3) ~ I S K NLet A x, A_{y}, ix be cuppontleeactions at A and I respectivey.\begin{array}{r}\rightarrow \quad \Sigma M_{A}=0 \\-(20 \times 12)-(15 \times 9)-(15 \times 6)-(15 \times 1)-(40 \times 6) \\\quad+6 I_{-x}=0\end{array}(1)(2)\begin{aligned}\theta & =\tan ^{-1}\left(\frac{G}{12}\right) \\& =26.56 \mathrm{~s}^{\circ} \\\frac{A L}{A E} & =\frac{\Delta H}{\Delta E}=\frac{C G}{C E}=\frac{\Delta F}{D E} \\-B K & =4.5 \mathrm{~m} \\C G & =7 \mathrm{~m}\end{aligned}\begin{array}{l}\sum F_{x}=0 \\A_{x}+I_{x}=0 \Rightarrow A x+125=0 \Rightarrow A x=-125 \mathrm{kN} \\\sum F_{y}=0 \\A y=-15-15-15-20-40=0 \Rightarrow A y=105 \mathrm{kN} \\\alpha=\tan ^{-1}\left(\frac{B H}{A B}\right)=\tan ^{-1}\left(\frac{4.5}{3}\right) \\=56.31\end{array}Using method of sectionTake Lis of (1)-(1) section\begin{array}{l}\sum M_{R}=0 \\6 I_{x}+\left(F_{I_{n}} \cos 0\right) 6=0 \\(6 \times 12 s)+\left(F_{L_{n}} \cos 26 . G_{61}\right) 6=0 \\R_{C n}=-139.7 \sin \text { (c) } \\\sum F_{y}=0\end{array}\varepsilon f_{y}=0A y-F_{A M} \sin \alpha+F_{I n} \sin \theta=0105-F_{A H} \sin 56.31-(139.75 \sin 26.565)=0\begin{array}{l}F_{A H}=51.08 \mathrm{kN}(t) \\\beta=45^{\circ}\end{array}Take sution (2) - (2)\begin{aligned}& +\quad \sum M_{B}=0 \\& \left(F_{H G}\right) B H+I_{x} \times 6-(A y \times 3)=0 \\\Rightarrow & F_{H G} 4.5+(115 \times 6)-(105 \times 3)=0 \\& F_{H} h=-96.67 \mathrm{KN} \text { (c) (c) }\end{aligned}\begin{array}{l}\sum f_{x}=0 \\A_{x}+C_{x}+f_{B C}+f_{B C} \cos B+f_{x a} \cos \theta=0 \\\Rightarrow f_{B C}+66.14 \cos 45-96.67 \cos 26.565=0 \\F_{B C}=39.64 \mathrm{kN}(T) \\\end{array}Take Rns of suction (3) -(1)\begin{aligned}y=\tan ^{-1}\left(\frac{\partial f}{3}\right) & =\tan ^{-1}\left(\frac{1.5}{3}\right) \\& =26.565^{\circ}\end{aligned}\begin{array}{l} \sum F_{x}=0 \\A_{x}+F_{A B}+F_{A n} \cos \alpha+F_{I_{n}} \cos \theta \\+I_{x}=0\end{array}F_{A B}=96.706 \mathrm{kN}(\tau)\begin{array}{l}\frac{E F_{y}=0}{1 A_{y}-15-F D G \sin B+F_{H} \sin \theta 00} \\\qquad F_{B G}=66.14 \mathrm{kN}(T)\end{array}G\begin{aligned}\varepsilon M_{F} & =0 \\& -(20 \times 3)+\left(F_{C D} \times D F\right)=0 \\& =(-60)+\left(F_{C D} \times 41.5\right)=0 \Rightarrow F_{C D}=40 \mathrm{kN}(T) \\\varepsilon F_{X} & =0 \\& -F_{C D}-F_{C F} \cos Y-F_{G C} \cos \theta=0 \\& \left.\left.-40-F_{C F} \cos 26.56\right)-F_{G F} \cos 16.56\right)=0 \ldots\end{aligned}\begin{array}{l}\sum F y=0 \\=-15-20+F(F \sin y-F G F \sin \theta=0 \\\left.-35+F_{f} \sin 2(.56)-F_{G F} \sin 26.56\right)=0 \quad \cdots \text { (2) }\end{array}From (1) and (2)F_{F}=16.77 \mathrm{kN}(\tau), \quad F_{G F}=-61.5 \mathrm{kN} \mathrm{(C)}Now at Joint 0\begin{array}{l} \sum F_{x}=0 \\F_{D O}=F_{D E}=40 \mathrm{kN}(T) \\\sum F_{y=0} \\-1 S-F_{D F}=0 \Rightarrow F_{D F}=-1 \delta \mathrm{kN}(C)\end{array}Af Joint E,\begin{array}{l}\sum F_{y}=0 \\-20-F_{E F} \sin \theta=0 \\F_{E F}=\frac{-20}{\sin 26.56 \mathrm{~J}} \\F_{E F}=44.72 \mathrm{kN} \quad \text { (C) }\end{array}At Joint D,\begin{array}{l}\sum F_{y}=0 \\-15-F_{B n}-F_{B C} \sin B=0 \\\left.-15-F_{B n}-66.14 \sin 4\right)=0 \\\quad F_{B n}=-61.768 \mathrm{kN}\end{array}At Soint I\begin{array}{l}\angle F_{y}=0 \\F_{A_{I}}+F_{I n} \sin \theta=0 \\F_{A I}=-(139.75 \sin 26.56 \mathrm{~S})=0 \\F_{A_{I}}=62.5 \mathrm{KN} \quad(T)\end{array}At Joint C\begin{array}{l}\sum F_{y}=0 \\-F c_{r}-15 \cdot F_{C F} \sin y=0 \\-F c G-15-(16.72 \sin 26.565)=0 \\F\left(G_{r}=-22.51 \times N\right. \text { (c) }\end{array} ...