the state equation and the output equation are given in the below picture system matrix A = 0 1 0 0 0 1 sol The conanical form is:. By comparing with standard CCF{:[" ire, "(y(z))/(u(z))=(b_(0)z^(3)+b_(1)z^(2)+cdotsb_(n))/(z^(n)+a_(1)z^(n-1)+cdotsa_(n))],[{::.quadb_(0)=0,b_(1)=1,b_(0)=0,b_(3)=1,quad}TF=(z^(2)+1)/(z^(3)-1)],[a_(1)=0quada_(2)=0","a_(3)=01]:}n-3{:[:.[[x_(2)(k+1)],[x_(2)(k+1)],[x_(3)(k+1)]]=[[0,1,0],[0,0,1],[H,-0,0]][[x_(1)(k)],[x_(2)(k)],[x_(3)(k)]]+[[0],[0],[1]]u(k)],[y[(k)=[[1-1.0,0-0,1-0.0]]*[[x_(1)(k)],[x_(2)(epsi)],[x_(3)(k)]]+0.0(k):}],[[[x_(1)(k+1)],[x_(2)(k+1)],[{:x ... See the full answer