Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Soln:-6) (a) Given equation,\begin{array}{l}y^{\prime \prime}+6\left(y^{\prime}\right)^{2}+5 \sin (5 y)+y^{3}=0 \\y^{\prime \prime}=-6\left(y^{\prime}\right)^{2}-5 \sin (5 y)-y^{3}\end{array}Let y=x_{1} \quad \& \quad y^{\prime}=x_{2}-(ii)y^{\prime}=x_{1}^{\prime}-(i)From (i) \$ (ii), we obtain\frac{x_{1}^{\prime}=x_{2}}{x_{2}^{\prime}=-6 x_{2}^{2}-5 \sin \left(5 x_{1}\right)-\left(x_{1}\right)^{3}}Which is required first order differen- tial equation.(b)\begin{array}{l}y^{\prime \prime \prime}+5 y^{\prime \prime}+3 y^{\prime}+y=0 \\y^{\prime \prime \prime}=-y-3 y^{\prime}-5 y^{\prime \prime} \\\text { Let } y=x_{1} \quad \Rightarrow y^{\prime}=x_{1}^{\prime} \\y^{\prime}=x_{2} \quad \Rightarrow y^{\prime \prime}=x_{2}^{\prime} \\y^{\prime \prime}=x_{3}\end{array}From above these. equation, we getx_{1}^{\prime}=x_{2} \quad 8 \quad x_{2}^{\prime}=x_{3}Now eqn (1) changes into \left(y^{\prime \prime}\right)^{\prime}=-y-3 y^{\prime}-5 y^{\prime \prime}\left(x_{3}\right)^{\prime}=-x_{1}-3 x_{2}-5 x_{3}which is reghired fross order differential e^{n}. ...