Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution-  Solution- (1) The given differential equation isd x d y+\frac{2 x}{1+x^{2}} y d x=\frac{4 x^{2}}{1+x^{2}} d xDividing by d x on both the sides, we have\frac{d y}{d x}+\frac{2 x}{1+x^{2}} y=\frac{4 x^{2}}{1+x^{2}}Whose I.F is given by\text { I.F. }=e^{\int \frac{2 x}{1+x^{2}} d x}=e^{\log \left(1+x^{2}\right)}=1+x^{2}Thus the solution is given byy x\left(1+x^{2}\right)=\int\left(1+x^{2}\right) x \frac{4 x^{2}}{1+x^{2}} d x+Cwhere C is an arbitrary constant.\boldsymbol{y} \boldsymbol{x}\left(1+x^{2}\right)=\frac{4 x^{3}}{3}+\boldsymbol{C}Hencey=\frac{4 x^{3}}{3 x\left(1+x^{2}\right)}+\frac{C}{x\left(1+x^{2}\right)}which is the required general solution.Solution- (2) - The given differential equation is\cos (x) \sin (x) d x-y x^{2} d y+y d y-x y^{2} d x=0Dividing by d x on both the sides, we have\begin{array}{l} \cos (x) \sin (x)-y x^{2} \frac{d y}{d x}+y \frac{d y}{d x}-x y^{2}=0 \\\Rightarrow \cos (x) \sin (x)-x y^{2}=y \frac{d y}{d x}\left(x^{2}-1\right)\end{array}Multiplying by 2 on both the sides, we have\sin (2 x)-2 x y^{2}=2 y \frac{d y}{d x}\left(x^{2}-1\right)Or2 y \frac{d y}{d x}+\frac{2 x y^{2}}{x^{2}-1}=\frac{\sin (2 x)}{x^{2}-1}Puttingy^{2}=z\Longrightarrow 2 y \frac{d y}{d x}=\frac{d z}{d x} \Longrightarrow \frac{d z}{d x}+\frac{2 x z}{x^{2}-1}=\frac{\sin (2 x)}{x^{2}-1}Whose I.F. is given byI.F. =e^{\int \frac{2 x}{x^{2}-1} d x}=e^{\log \left(x^{2}-1\right)}=x^{2}-1Thus the solution is given byz \times\left(x^{2}-1\right)=\int\left(x^{2}-1\right) \times \frac{\sin (2 x)}{x^{2}-1} d x+Cwhere C is an arbitrary constant .Substituting z=y^{2}, theny^{2}\left(x^{2}-1\right)=\frac{-1}{2} \cos (2 x)+CHencey^{2}=\frac{-1}{2\left(x^{2}-1\right)} \cos (2 x)+\frac{C}{x^{2}-1}which is the required result .Solution - (3) The given differential equation is\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+5 y=0The auxiliary equation ism^{2}-4 m+5=0By using the quadratic formulam=\frac{4 \pm \sqrt{16-20}}{2}=\frac{4 \pm 2 i}{2}=2 \pm iThus the general solution is given by\boldsymbol{y}=e^{2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)Required solution.Solution - (4) The given differential equation is\boldsymbol{x}-\boldsymbol{y} \frac{d x}{d y}=a\left(x^{2}+\frac{d x}{d y}\right)OR\boldsymbol{x}-\boldsymbol{y} \frac{d x}{d y}=a x^{2}+a \frac{d x}{d y}\Longrightarrow x(1-a x)=(y+a) \frac{d x}{d y}Separating the variables, we have\frac{d y}{y+a}=\frac{d x}{x(1-a x)}Or\frac{d y}{y+a}=\frac{d x}{x}+\frac{a \cdot d x}{(1-a x)}Integrating on both the sides, we have\int \frac{d y}{y+a}=\int \frac{d x}{x}+\int \frac{a \cdot d x}{(1-a x)}+\log (C)where \log (C) is an arbitrary constant.\begin{array}{l}\log (y+a)=\log (x)-\log (1-a x)+\log (C) \\\Longrightarrow \log (y+a)=\log \left(\frac{C x}{1-a x}\right)\end{array}OR\boldsymbol{y}+\boldsymbol{a}=\left(\frac{C x}{1-a x}\right)Hence\boldsymbol{y}=\left(\frac{C x}{1-a x}\right)-aRequired solution. ...