Given Data:-{:[d=20mm],[S_(y)=440mpa.]:}Solution:-=> Free body Diagram:-plane x-yfor Static Equillibrium,{:[sumM_(A=0)(1600 xx160)-(R_(D)xx640)=0],[R_(D)=400N],[sum Fy=0quad1600-RA-R_(D)=0.],[R_(P)=1200N]:}{:[SFA=-RA=-1200N],[SFB=-1200+1600=400N],[SF_(C)=-1200+1600=400N=SF_(D)],[SFD=400N". "],[(BMD)/(BMA)=BMD=0". "],[BM_(B)=1200 xx160=192000N*mm],[{:BM_(H)=1200 xx320=11600 xx160)=128000N*mm],[BMC=1200 xx480=5210000Nxxmn=6400Nmm]:}{:[1400+200],[=1600N]:}Torve alagram(1600 xx360)TB=(1400-200)xx90//2=54000N-mmTt=(1100-300)xx135//2=54000N-mmPhare x-zFor Statk Equilibrium,Torque DiougnamBMDBMA:BM_(D)=0{:[BMB=(350 xx(60)=56000N-mm],[BMA=(350 xx320)=112000N-mm],[BMC=(350 xx480)=168000N-mm]:}Internal Loadinis at sectuon (HK)Bentunig moment, M=sqrt((128000)^(2)+(112000)^(2))=170082.33N-mm Torsional moment, T=54000N-mm.Sorens At Sectuon itk shoar load, V=sqrt(400^(2)+350^(2))=531.51NMaximum.Torsional shear Stren,Transverse shear stren, tau_("iran ")=(4)/(3)((v)/(t)) Trorsion =(T)/(J)R=(16+)/(pid^(3))=(16 xx54000 ... See the full answer