Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

Q21 As per chegg QA Rulei 9 dim answering one question ie. Q2 as below its both parts.(d) For, 'L', X_{L}=\omega L=4000 \times 2.5 \times 10^{-3} \Omegax_{1}=j 10 \OmegaFor ' C^{\prime}, \quad x_{c}=\frac{1}{\omega C}=\frac{10^{6-3}}{12.5 \times 4}=(20)^{1} \Omega(-j)=-20 J^{\circ} \OmegaNow; f or I_{g}, V_{0} and I_{a}, we Prorecd as;For Ig\begin{array}{l}\text { zin }=5+\{j 10\} \|\{(10)+(20) \|(-20 j)\} \\=5+1 \mathrm{Joj} 1(10+10 \mathrm{~J}) \Omega=10 \sqrt{2} \\\end{array}\begin{array}{l} \therefore I_{g_{1}}=\frac{V_{g}}{2 i n}=\frac{25 L 0^{\circ}}{10 \sqrt{2} L 4}=\frac{5}{2 \sqrt{2}} 145^{\circ} \\I_{1}=\frac{j 10}{20-10 j+10 j} \times I_{g}=\frac{5}{2 \sqrt{2}} \mid 45^{\circ} \times 0.5190 \\I_{1}=\frac{5}{4 \sqrt{2}} 4135^{\circ} \Rightarrow I_{a}=\frac{-20 j}{20-20 j} \times I_{1}=\frac{5}{8} 190^{\circ} \mathrm{A} \\\therefore I_{a}=\frac{5}{8} j \mathrm{~J} \\V_{0}=20 \times I_{a}=20 \times \frac{5}{8} j=\frac{25}{2} j\end{array}\therefore We get expreesion for all the parte as\begin{array}{l}I_{g}=1.767 \sin \left(4000 t+45^{\circ}\right) \\I_{a}=0.625 \sin (4000 t+90) \\V_{0}=12.5 \sin \left(4000 t+90^{\circ}\right)\end{array}(b) Plot of the above function will be;(ii) I_{a}=0.625 \sin \left(4000 t+90^{\circ}\right) A \quad \frac{2 \pi}{4000}=T(II) V_{0}=12.5 \sin (4000 t+90)Thankyou. I have answered Q2 as per QA RULE. .Please like theanswer ASAP. ...