Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
plot grapb t/v V/s V\begin{array}{l}t / \mathrm{v}=1 \times 0^{-4} \mathrm{v}+0.01 \\P=100 \mathrm{k} \mathrm{Pa}\end{array}i)\begin{array}{l}t / v=k v+B \\k \propto \frac{1}{\Delta P} \text { and } B \propto \frac{1}{\Delta p} \\\text { So when } \Delta p=50 \mathrm{kPa} \\t / v=\frac{1 \times 10^{-4}}{0.5} v+\frac{0.01}{0.5}\end{array}put V_{2} 100 \mathrm{ml}t=4 S.b) filteration rate =\frac{d v}{d t}+\frac{1}{B+2 k x} (from the table) at end\begin{aligned}d y /\left.d t\right|_{F} & =\frac{1}{\frac{0.01}{0.5}+\frac{2 \times 1 \times 10^{-4} \times}{0.5}} 200 \\& =20\end{aligned}at start (from the table)\begin{aligned}d y /\left.a t\right|_{F} & =\frac{1}{\frac{0.01}{0.5}+\frac{2 \times 1 \times 10^{-4} \times 1}{0.5}} \\& =49.02\end{aligned}iii) New \frac{f}{v} V_{s} V equation.\begin{array}{l}\Delta P=25 \mathrm{kPa} \\f / v=\frac{1 \times 10^{-4}}{0.25} \times v+\frac{0.01}{.25} \\\frac{d v}{d t}=\frac{1}{\frac{0.01}{0.25}+\frac{2 \times 1 \times 10^{-4}}{0.25} \times 200}=5 \\\text { time }=\frac{0.1 \times 1000}{d x /\left.d b\right|_{F}} \\=\frac{0.1 \times 1000}{5} \\=205 \\\end{array} ...