Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Explanation:The open loop transfer function \mathbf{G}(\mathbf{s}) is defined as,\begin{array}{l}\mathbf{G}(\mathbf{s})=\begin{array}{c}\mathbf{k}(\mathbf{s}+\mathbf{3}) \\\mathbf{s}^{2}+2 \mathbf{s}+\mathbf{3}\end{array} \\\mathbf{G}(\mathbf{s})=\frac{\mathbf{k}(\mathrm{s}+\mathbf{3})}{\mathbf{s}^{2}+2 \mathbf{s}+\mathbf{1}+\mathbf{2}} \\\mathbf{G}(\mathbf{s})=\frac{\mathbf{k}(\mathbf{s}+\mathbf{3})}{(\mathbf{s}+\mathbf{1})^{2}+\mathbf{2}} \\\mathbf{G}(\mathbf{s})=\begin{array}{c}\mathbf{k}(\mathbf{s}+\mathbf{3}) \\(\mathbf{s}+\mathbf{1})^{2}+(\sqrt{\mathbf{2}})^{2}\end{array} \\\mathbf{G}(\mathbf{s})=\frac{\mathbf{k}(\mathbf{s}+\mathbf{3})}{(\mathbf{s}+\mathbf{1}+\mathbf{j} \mathbf{2})(\mathbf{s}+\mathbf{1}-\mathbf{j} \mathbf{2})} \\\end{array}Objective: To sketch the root locus diagram for given system.Step-1).Number of zeros: N(z)=1Number of poles: N(p)=2Location of zeros are at: s=-3Location of poles are at: s=-1 \pm j \sqrt{ } 2Step-2) Number of asymptote =|N(p)-N(z)|=|2-1|=1Step-3) Angle of asymptote will be,\theta=\underset{\mathbf{N}(\mathbf{p})-\mathbf{N}(\mathbf{z})}{(\mathbf{2}+1)}Where, q \Rightarrow 0,1,2,3, \ldots, N(p)-N(z)-1=0\begin{array}{l}\theta=\frac{(2 \mathrm{q}+1) 180^{\circ}}{2-1} \\\theta=\frac{(2 * 0+1) 180^{\circ}}{1} \\\theta=180^{\circ} \\\end{array}Step-4). The location of centroid will be,\begin{array}{l}\sigma=\sum \operatorname{Real}(\text { poles })-\sum \operatorname{Real}(\mathbf{z e r o s})-\mathbf{N}(\mathbf{z}) \\\sigma=\begin{array}{c}-\mathbf{1}-\mathbf{1}-(-\mathbf{3}) \\\mathbf{2}-\mathbf{1}\end{array} \\\sigma=\frac{-\mathbf{1}-\mathbf{1}+\mathbf{3}}{1} \\\sigma=\begin{array}{c}-\mathbf{2}+\mathbf{3} \\\mathbf{1}\end{array} \\\sigma=1 \\\mathbf{1} \\\sigma=\mathbf{1}\end{array}Step-5). now to get the location breakaway/break-in point, we need \mathrm{dk} / \mathrm{ds}=0.Characteristics equation will be 1+\mathrm{G}(\mathrm{s})=\begin{array}{l}\mathbf{1}+\mathbf{G}(\mathbf{s})=\mathbf{0} \\\mathbf{1}+\begin{array}{c}\mathbf{k}(\mathbf{s}+\mathbf{3}) \\\mathbf{s}^{2}+\mathbf{2 s}+\mathbf{3}\end{array}=\mathbf{0} \\\frac{\mathbf{k}(\mathbf{s}+\mathbf{3})}{\mathbf{s}^{2}+\mathbf{2 s}+\mathbf{3}}=-\mathbf{1} \\\mathbf{k}=-\mathbf{s}^{2}+\mathbf{2 s}+\mathbf{3} \\\mathbf{s}+\mathbf{3}\end{array}Taking derivative of "k" with respect to \mathbf{s}, using quotient rule of differentiation, we get\begin{array}{l}\underset{\mathbf{d s}}{\mathbf{d k}}=-\left\{\begin{array}{c}(\mathrm{s}+\mathbf{3}) * \frac{\mathrm{d}^{2}+2 \mathrm{~s}+3}{\mathrm{ds}}-\left(\mathrm{s}^{2}+2 \mathrm{~s}+3\right) * \frac{\mathrm{d}[\mathrm{s}+3]}{\mathrm{ds}} \\(\mathrm{s}+3)^{2}\end{array}\right\} \\\frac{\mathrm{dk}}{\mathrm{ds}}=-\left\{\frac{(\mathrm{s}+3) *(2 \mathrm{~s}+2)-\left(\mathrm{s}^{2}+2 \mathrm{~s}+3\right) * 1}{(\mathrm{~s}+3)^{2}}\right\} \\\frac{\mathrm{dk}}{\mathrm{ds}}=-\left\{\begin{array}{c}2 \mathrm{~s}^{2}+8 \mathrm{~s}+6-\mathrm{s}^{2}-2 \mathrm{~s}-3 \\(\mathrm{~s}+3)^{2}\end{array}\right\} \\\frac{\mathrm{dk}}{\mathrm{ds}}=-\left\{\frac{\mathrm{s}^{2}+6 \mathrm{~s}+\mathbf{3}}{(\mathrm{s}+\mathbf{3})^{2}}\right\}=\mathbf{0} \\-\left\{\frac{\mathbf{s}^{2}+6 \mathrm{~s}+3}{(\mathrm{~s}+3)^{2}}\right\}=\mathbf{0} \\\frac{\mathbf{s}^{2}+6 \mathbf{s}+\mathbf{3}}{(\mathrm{s}+\mathbf{3})^{2}}=\mathbf{0} \\\mathbf{s}^{2}+\mathbf{6 s}+\mathbf{3}=\mathbf{0} \\\end{array}Solving above quadratic equation, we will get two value of "s",\begin{array}{l}\mathbf{s}=\frac{-6 \pm \sqrt{6^{2}-4 * 1 * 3}}{2 * 1} \\\mathbf{s}=\frac{-6 \pm \sqrt{36-12}}{2} \\\mathbf{s}=\frac{-6 \pm 4.89898}{2} \\\mathbf{s}=-0.55,-5.45\end{array}Only s=-5.45 will be valid breakaway point it lies on root locus plane, while the point s=-0.55 doesn't lies on root locus plane.Step-6) The location of zeros, poles and breakaway point is shown belowStep-7). Now the angle of departure for complex poles will be,\phi_{\mathbf{D}}=\mathbf{1 8 0}^{\circ}-\phiWhere, \Phi=< poles -< zeros\begin{array}{l}\phi_{\mathbf{D}}=\mathbf{1 8 0}^{\circ}-\left\{\mathbf{9 0}^{\circ}-\mathbf{3 5 . 2 6 4 ^ { \circ } \}}\right. \\\phi_{\mathrm{D}}=\mathbf{1 8 0}^{\circ}-\mathbf{5 4 . 7 3 6}^{\circ} \\\phi_{\mathrm{D}}=\mathbf{1 2 5 . 2 6 ^ { \circ }} \\\end{array}Step-8). Finally sketching the root locus diagram, ...