Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
from the given datashort shunt compound generatorLoad current, I_{L}=30 \mathrm{~A}load Volkage, V=220 \mathrm{~V}.Armatuere resistance, R_{a}=0.05 \Omega,Series feild resirtance, R_{\text {se }}=0.3 \mathrm{~N}Shunt feird resisfance, R_{\text {sh }}=200 \OmegaBrush drop =1 \mathrm{v} per brush.Voltage drop inserres winding\begin{array}{l}=\left(I_{L}\right)\left(R_{\text {Se }}\right) \\=(30)(0.3) \\=9 \mathrm{~V}\end{array}Voltuge across shunt feild wending\begin{aligned}& =220+9 \\& =229 \mathrm{~V} \quad\left(\because V+I_{L} R_{\text {se }}=V_{\text {Shunt }}\right. \\I_{S h} & =\frac{229}{200}=1.145 \mathrm{~A} \quad\left(\because V_{\text {Shunt }}=I_{\text {Sh Sh }}\right) \\I_{S h} & =1.145 \mathrm{~A} \quad(\because \quad)\end{aligned}current equation\begin{aligned}I_{a} & =I_{L}+I_{5 h} \\& =30+1.145 \Rightarrow I_{a}=31.145 \mathrm{~A}\end{aligned}Armature current\begin{aligned}\text { \& Armature drop } & =I_{a} R_{a} \\& =(31.145)(0.05)=1.56 \mathrm{~V} \\\text { Brash drop } & =2 \times 1=2 \mathrm{~V}=V_{\text {brush }} \\\therefore \quad E_{g} & =V+I_{s e} R_{s e}+I_{a} R_{a}+B_{r a s h} d r o p \\& =V+I_{L} R_{s e}+I_{a} R_{a}+V_{\text {brash }} \\& =220+q+1.56+2\end{aligned}\therefore Induced E.M.F E_{g}=232.56 \mathrm{~V} ...