Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Given polynomials^{3}+10 s^{2}+50 s+500=0This criterion is based on arranging the coefficients of characteristic equation into an array called "Routh array".q(s)=a_{0} s^{n}+a_{1} s^{n-1}+a_{2} s^{n-2}+\cdots+a_{n}=0 .Routh array: \quad a_{0}=1 ; a_{1}=10 ; a_{2}=50 ; a_{3}=500s^{n} \quad a_{0} \quad a_{2} \quad a_{4} \quad a_{6} \ldotss^{n-1} \quad a_{1} \quad a_{3} \quad a_{5} \quad a_{7} \ldots where;\begin{array}{l}s^{n-2} \quad b_{1} b_{2} b_{3} \ldots \ldots \quad b_{1}=\frac{a_{1} a_{2}-a_{0} a_{3}}{a_{1}} \\s^{n-3} c_{1} \quad c_{2} \quad c_{3} \ldots b_{2}=\frac{a_{1} a_{4}-a_{0} a_{5}}{a_{1}} \\c_{1}=\frac{b_{1} a_{3}-a_{1} b_{2}}{b_{1}} \\s^{0} \quad a_{n} \\c_{2}=\frac{b_{1} a_{5}-a_{1} b_{3}}{b_{1}} \\5^{3} 150 \\s^{2} \quad 10 \quad 500 \\s^{\prime} \quad 0 \quad 0 \\b_{1}=\frac{10 \times 50-500}{10} \\b_{1}=0 \\\end{array}No sign change in the first column of Routh table, we got zero, so the system is marginally stable.\rightarrow Answer is option (C) ...