Answer is 6.04Nm. How do i get this answer please ?
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Answer:-Given that,Number of tecth of the input egear, N_{1}=45No. of teeth of the output ejear, N_{2}=80Gear efficiency =95 \%=0.95=\eta_{G}.The output shaft is to deliver torque T_{0}=10.2 \mathrm{Nm}.Therefove,The power deliver from Motor input eyear, N_{1}=45 input to output shaft via ejear.so, By using formulae for power flow equation is\begin{aligned}& P_{\text {out }}+\eta_{G} \times P_{i n}=0 . \\\because P_{\text {out }}= & Z_{\text {orit }} \times \omega_{0} . \\P_{\text {in }}= & T_{\text {ipit }} \times \omega_{\text {in }} .\end{aligned}outpat year, N_{2}=80^{\circ}substituat\begin{array}{l}T_{0} \times \omega_{0}+\eta_{G}\left[T_{i} x \omega_{i}\right]=0 . \\T_{0}=10.2 \mathrm{Nm}, \eta_{G}=0.95 \\\end{array}substituted valus. in eq(2), we eget\begin{array}{l}(10.2) \omega_{0}+\left(\eta_{G}=0.95\right)\left(T_{i} \times \omega_{i}\right)=0 . \\10.2 \omega_{0}=-0.95 T_{i} \omega_{i} \\\frac{10.2}{0.95}=-T_{i} \frac{\omega_{\text {input }}}{\omega_{\text {output }}}\end{array}\therefore rejer of lar is.(2)\frac{N_{2}}{N_{1}}=\frac{\omega_{1}}{\omega_{0}}=\frac{80}{45}substituted\begin{array}{c}\frac{10.2}{0.95}=-T_{i}\left[\frac{80}{45}\right] \\T_{i}=-\left[\frac{10.2 \times 45}{80 \times 0.95}\right] \\T_{i}=-6.03947 \mathrm{Nm} \\\therefore T_{i} \simeq-6.04 \mathrm{Nm}\end{array}Here-ve sign shows reverse rotation asTherefove, Given Answer.The torque required on the input shaft, \tau_{i}=6.04 \mathrm{Nm} ...