Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Sol:- Let P_{3}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}=p(x)where a_{0}, a_{1}, a_{2} and a_{3} are to be determined.since P(x) passes through the points (0,0),(0,5, y),(1,3) and (2,2).And coefficient of x^{3} in p_{3}(x) is 6\Rightarrow a_{3}=6so, P(x)=a_{0}+a_{1} x+a_{2} x^{2}+6 x^{3}P(x) Passes +hrough (0,0)\begin{array}{c}\Rightarrow \quad 0=a_{0}+0+0+0 \\\Rightarrow a_{0}=0\end{array}P(x) Passes through (0.5, y)\begin{array}{c}\Rightarrow \quad y=a_{0}+(0.5) a_{1}+(0.5)^{2} a_{2}+6(0.5)^{3} \\\Rightarrow y=a_{0}+0.5 a_{1}+0.25 a_{2}+0.125 \times 6 \\\because a_{0}=0 \\\Rightarrow \quad y=0.5 a_{1}+0.25 a_{2}+0.750\end{array}p(x) passes through (1,3)\begin{array}{l}\Rightarrow \quad 3=a_{0}+a_{1}+a_{2}+6 \\\because a_{0}=0 \\\Rightarrow \quad 3=a_{1}+a_{2}+6 \Rightarrow a_{1}+a_{2}=-3 \\\end{array}P(x) passes through (2,2)\begin{array}{c}\Rightarrow \quad 2=a_{0}+2 a_{1}+4 a_{2}+6 \times(2)^{3} \\\Rightarrow \quad 2=a_{0}+2 a_{1}+4 a_{2}+48 \\\because a_{0}=0 \\\Rightarrow \quad 2=2 a_{1}+4 a_{2}+48 \\\Rightarrow \quad a_{1}+2 a_{2}=-23-3\end{array}Now, equation (2) and (3)\begin{array}{r}a_{1}+a_{2}=-3 \\a_{1}+2 a_{2}=-23 \\\hline-a_{2}=20 \\a_{2}=-20\end{array}p_{4}+a_{2}=-20 in eqution (2)\text { a) } \begin{array}{r}-20=-3 \\a_{1}=17\end{array}p_{4}+a_{0}=0, a_{1}=17, a_{2}=-20 in equation (1). we get.\begin{aligned}y & =0+(0.5) a_{1}+0.25 a_{2}+0.750 \\\Rightarrow y & =0.5 \times 17+0.25 \times(-20)+0.750 \\y & =8.5-5+7.50 \\y & =4.250 \text { or }=y=\frac{17}{4}\end{aligned}so y=4.250 ...