Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
we know thotfor orthogund line and pleine\vec{d}=k \vec{n}for parallel line and plane\vec{d} \cdot \vec{n}=0given 11 n t is (1+t, 2-t, 4 t)d^{\prime}=(1,-1,4)(1)\begin{array}{r}x-y+4 z=5 \\\vec{n}=(1,-1,4) \\\text { clearly } \vec{d}=\vec{n}\end{array}\therefore orthugonalcorrect option (b)(1+t, 2-d, 4 t) is ortho gond to the planex-y+4 z=5(2)\begin{array}{l} 2 x-2 y-2=1 \\\vec{n}=(2,-2,-1) \\\vec{d} \cdot \vec{n}=1 \times 2+2 \times 1-9 \times 1 \\=2+2-4 \\=0 \\\vec{d} \cdot \vec{n}=0 \quad \text { (paralle1) }\end{array}correct optien a)[+t, 2-t, A t) is paralel w the plane.2 x-2 y \neq z=1 ...