Feedback system finding the transfer function with
feedback
the input is:
. Find
and graph
.
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Page-1AnsThe above block diagram seduces to:\begin{array}{l}y(t)=1 \Rightarrow y(s)=\frac{1}{s} \\\therefore x(S)=\frac{G_{\alpha}(S) \cdot Y(s)}{1+G_{x}(S) H(s)} \\\therefore x(s)=\frac{\frac{1}{s+2} \cdot \frac{1}{s}}{1+\left(\frac{1}{s+2}\right)\left(\frac{1}{s+1}\right)} \\\therefore x(s)=\frac{\frac{1}{s(s+1)}}{\frac{(s+2)(s+1)+1}{(s+2)(s+1)}}=\frac{1}{s(s+1)} \times \frac{(s+2)(s+1)}{(s+2)(s+1)+1} \\\end{array}Page-2\begin{array}{l}\therefore x(s)=\frac{s+2}{\left(s^{2}+3 s+2+1\right) s} \\\therefore x(s)=\frac{s+2}{\left(s^{2}+3 s+3\right) s}\end{array}Use partial fraction\begin{array}{l}\frac{S+2}{S\left(S^{2}+3 S+3\right)}=\frac{A}{S}+\frac{B S+C}{S^{2}+3 S+3} \\\therefore S+2=A\left(S^{2}+3 S+3\right)+B S^{2}+C S \\\therefore S+2=A S^{2}+3 A S+3 A+B S^{2}+C S\end{array}compare coefficients of S^{2}, S & contants.\begin{array}{l}=L^{-1}\left\{\frac{2 / 3}{s}\right\}-L^{-1}\left\{\frac{\frac{2 s}{3}+1}{s^{2}+3 s+3}\right\} \\\end{array}Page-3\begin{aligned}& =L^{-1}\left\{\frac{2 / 3}{s}\right\}-L^{-1}\left\{\frac{\frac{2 s+3}{3}}{s^{2}+3 s+3}\right\} \\& =\frac{2}{3}(1)-\frac{1}{3} L^{-1}\left\{\frac{2 s+3}{s^{2}+3 s+\frac{9}{4}+\frac{3}{4}}\right\} \\& =\frac{2}{3}-\frac{1}{3} L^{-1}\left\{\frac{2 s+3}{(s+3 / 2)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right\} \\& =\frac{2}{3}-\frac{2}{3} L^{-1}\left\{\frac{s+3 / 2}{(s+3 / 2)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right\} \\& =\frac{2}{3}-\frac{2}{3} e^{-3 t / 2} \cdot \cos \frac{\sqrt{3} t}{2} \\x(t) & \left.=\frac{2}{3}\left[1-e^{-3 t / 2} \cos \frac{\sqrt{3} t}{2}\right]\right]\end{aligned}The Graph of the function x(t) is shown in the figure below. It becomes constant after attaining the value of x(t)= 0.6667 ...