Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
soln\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+26 y=0 \quad y(0)=0, \quad y^{\prime}(0)=-5Taking laplace on both side we get\begin{array}{c}L\left\{\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 p y\right\}=0 \\\left.L\left\{\frac{d^{2} y}{d t^{2}}\right\}+2 L\left\{\frac{d y}{d y}\right\}+26 L y\right\}=0 \\s^{2} Y(5)-s y(0)-y^{\prime}(0)+2(s Y(5)-y(0)) \neq 26 Y(s)=0 \\\left(s^{2}+2 s+26\right) Y(5)=-5 \\Y(5)=\frac{-5}{s^{2}+2 s+26}\end{array}Tuking invecse laplace on both side wegel\begin{aligned}L^{\rightarrow}\{Y(s)\}^{6} & =L^{-1}\left\{\frac{-5}{s^{2}+25+26}\right\} \\y(t) & =L^{-1}\left\{\frac{-5}{s^{2}+2 s+1+25}\right\} \\& =L^{-1}\left\{\frac{-5}{(s+1)^{2}+25}\right\} \\& =-e^{-t}\left(t^{-1}\left\{\frac{5}{s^{2}+25}\right\}\right. \text { by first shifting propedy } \\y(t) & =-e^{-t} \sin (5 t)\end{aligned}Which is required solution ...