Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution:-Given;\begin{array}{ll}n_{1}=32, & n_{2}=25 \\\bar{x}_{1}=103.5, & x_{2}=114.2 \\s_{1}=12.3 & s_{2}=10.3\end{array}Test \mu_{1} \mathrm{cu}_{2}Hypothesis are \alpha=0.05\begin{array}{l}H_{0}:-\mu_{1}=\mu_{2} \\H_{1}:-\mu_{1}<\mu_{2}\end{array}Test statistics are,\begin{array}{l}t c a=\frac{\bar{x}_{1}-\bar{x}_{2}}{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\=32-25103 \cdot 5-114.2 \\\frac{(32-1) 12 \cdot 3^{2}+(25-1) 13 \cdot 3^{2}}{32+25-2} \\\end{array}\begin{array}{c}t c a l=-3.144973 \\t c a l=-3.145\end{array}\begin{aligned}P \text {-value } & =0.00133932-\because(P(x \leq T)=0.00133932) \\= & =0.001 \\P \text {.value } & =0.001\end{aligned}Here P-valuz <\alpha then we reject H 0 If p value c \alpha then we reject H 0 Here 0.001<0.05 then we reject to.D] Reject Ho. There is sufficient evidence at \alpha=0.05 level of significance to conclude that \mu_{11}-u_{2} ...