Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Answer #1Given:W_{\text {man }}=15016Weights per linear foot =3161 \mathrm{ft}\begin{array}{l}L=15.00 \mathrm{~m} \\M_{\text {max }}=?\end{array}Solution:Step 1: calculabe buoyant force, per linear foot\begin{array}{l} \sum F_{y}=0(\uparrow+v e) \\q^{\prime} \times L-W-q \times L=0 \\q^{\prime}=(W+q \times L) / L \\q^{\prime}=(150+3 \times 15) / 15 \\q^{\prime}=1316 / f t(+\uparrow)\end{array}Step 8:From free body diagram\begin{array}{l}q(x)=(13-3)=10(\uparrow+v e) \\v(x)=\int q(x) d x=\int 10 d x=10 x(0 \leq x \leq 7.5) \\M(x)=\int 10 x \cdot d x=\frac{10 \cdot x^{2}}{2}=5 x^{2}(0 \leq x \leq 7.5)\end{array}Maximum internal bending moment occurs when\begin{array}{l}x=7.5 f t \\M(7.5)=5(7.5)^{2}=281.251 b * f t\end{array}Wman = 15016 150lb a=31b/A I mm 7.541 7514 Weight per linear foot = 31b1ft L=15.0om M max = ? Solution: Step 1: calculate buoyant force per linear foot {fy =O (I tve) qxL-w-q x2 =0 q'= (W + 9xL)/2 q'=(150+ 3x15)/15 qu'=13.10/ft (+1) Step 8 From free body diagram q (ə) = (13 -3) = 10(1 +ve) vo) = Save) de - Sio dx = lox (0<x<+1) M(oc) = flox.de = 10.0² - 50² (os x = 7.5) Maxim om internal bending moment occurs when x=7.5ft M(7.5) 25 (75) * - 281.25 16 eft ...