The anchor beam AB is of uniform cross-section and carries a load P at the free end B. Determine the equation of the elastic curve and the displacement and slope at B. (2.8 m 1.8 kn)
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution Given A B is a cantilever beamBoundary condition:Elatic equation EI \frac{d^{2} y}{d x^{2}}=M xWhere M x is moment at section - ALet us convider a section x from B\begin{array}{l}M x=1.8 x \\\therefore E I \frac{d^{2} y}{d x^{2}}=1.8 x \int \\S \text { Lope }=\frac{d y}{d x}=E I \int \frac{d^{2} y}{d x^{2}}=\int 1.8 x \\E I \frac{d y}{d x}=\frac{0.9 x^{2}}{x}+C_{1} \\E I d y=0.3 x^{3}+c_{1} x+c_{2} \\\text { At A, } x=28, d y / d x=0, y=0 \\O=0.9(-2.8)^{2}+c_{1} \Rightarrow C_{1}=-7.056 .0 .3(2.8)^{3}-7.056(2.8)+c_{2} \Rightarrow C_{2}=13.1712 . \\\text { O }=0 . \frac{d y}{d x}=0.9 x^{2}-7.056 \\\text { Therefore equations are EI }\end{array}At A, x-2.8, \quad d y / d x=0, y=00=0.9(-2.8)^{2}+c_{1} \Rightarrow C_{1}=-7.056 \text {. }Therefore equations are E I \frac{d y}{d x}=0.9 x^{2}-7.056E I y=0.3 x^{3}-7.056+13.1712At point b, under load x=0\begin{array}{l}d y / d x=-7.056 / E I \text { (Slope) } \\y=\frac{13.1712}{E I} \text { (deflection) }\end{array} ...