Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Part (1)Part (2)at Bconsidur moment equilibrium abaut point A;\begin{array}{c}\left(+\sum M_{A}=0^{\circ}\right. \\+\quad\left(R_{B} \sin 40^{\circ}\right) \times 7+\left(R_{B} \cos 40^{\circ}\right) \times 1-(125 \times 4) \\-(600 \times 9)=0 \\1.40 R_{B}=5900 \quad 4214.28 l b \\R_{B}=4\end{array}Part (3) \rightarrow \Sigma f_{x}=0^{*},A_{x}+R_{B} \cos 40^{\circ}=0^{\circ}Part (4)\begin{array}{l}+\uparrow \delta f_{y}=0 \\A_{y}+R_{B} \sin 40^{\circ}-125-600=0\end{array}Part (5)Rolsing equation (1)\begin{array}{l}A_{x}=-R_{B} \cos 40^{\circ}=-(4214.28) \cos 40^{\circ} \\(\rightarrow) A_{x}=-3228.33 \mathrm{lb} \\(\leftarrow) A_{x}=3228.33 \mathrm{lb} \\\end{array}Raluing equation (11)total reaction at A.\begin{aligned}R_{A} & =\sqrt{A_{x^{2}}+A_{y}^{2}}- \\& =\sqrt{(3228.33)^{2}+(1983.88)^{2}}\end{aligned}eaction at R_{A}=3789.18 \mathrm{lb} Ansreaction at B ;, R_{B}=4214.28 \mathrm{lb} Ans ...