Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
第 1 步Let us first declare some variables:h: the ramp's elevation (20 \mathrm{~m})\theta : the ramp's inclination (30 degrees)\mathrm{m} : the weight of the block (5 \mathrm{~kg})g: gravity's acceleration \left(9.81 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right).第 2 步\mathrm{U}=\mathrm{mgh}The block at the bottom of the ramp has the kinetic energy:\mathrm{K}=(1 / 2) \mathrm{mv} \mathrm{v}^{\wedge}where v is the velocity of the block at the bottom of the ramp.第 3 步m g h=(1 / 2) m v^{\wedge} 2 v=\operatorname{sqr}(2 g h)Substituting the values yields:v=\operatorname{sqr}\left(2{ }^{*} 9.81 \mathrm{~m} / \mathrm{s}^{\wedge} 2 \times 20 \mathrm{~m}^{*} \sin (30\right. degrees \left.)\right)v=14.01 \mathrm{~m} / \mathrm{s}As a result, the block's velocity at the bottom of the ramp is 14.01 \mathrm{~m} / \mathrm{s}.Final answerAs a result, the block's velocity at the bottom of the ramp is 14.01 \mathrm{~m} / \mathrm{s}. ...