The conditions for the signal generated from the Q0.0
output of an S7-1200 class PLC whose input-output connections are
shown in the figure on the right are given as follows:
The system will be activated when the S1 button is pressed,
S0
It will be deactivated when the button is pressed.
When the system is active and the part is moving to the
right
The transition time (t1) of the piece will be determined with the
PS1 sensor.
Q0.0 = 1 immediately after t1 time the part is detected by PS2
sensor.
As soon as the PS1 sensor detects a new part, Q0.0 = 0
will be.
PLC main program block (OB1) average cycle time 35ms,
The t1 time ranges from 25ms to 500ms. Explain the PLC program
structure that meets these conditions, the related programs and the
operation by indicating the reasons.
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Answer : An::-\Rightarrow V_{s}-V_{f}= iffrential signalN_{s}+v_{f}= cannot be zeroV_{G c} is only valid for Negative.feedback systemInverting Amplifier:-\begin{array}{c}\Rightarrow R_{i n}=\frac{V_{s}}{I_{i n}}=\frac{V_{i n}}{\operatorname{Iin}_{i n} \rightarrow 0} \\R_{i n}=2 M \Omega\left(I_{c}-I_{e 1}\right) \\\left.R_{\text {in }}=\infty \text { (ideal }\right)\end{array}tig: Negetive feedback amplifierIdcal op-Amp:-\begin{array}{ll}A_{O_{L}}=\infty & V_{G C}=f\left(A_{O L}\right) \\I_{\text {in }}=\infty & I_{\text {in }}=f\left(R_{\text {in }}\right)\end{array}Apply K_{C} inverting terminal\begin{array}{c}\Rightarrow \frac{0-V_{S}}{R_{1}}+\frac{0-V_{\text {out }}}{R_{2}}+0=0 \\\Rightarrow \frac{-V_{S}}{R_{1}}+\frac{V_{\text {out }}}{R_{2}}\end{array}It Deceaser the gain \Rightarrow ctabify \uparrowA_{O_{L}}=\frac{V_{\text {out }}}{\left(V_{d}\right)=0} \infty \quad \infty \quad \frac{V_{\text {out }}}{V_{S}}=A c_{2}=\frac{-R_{2}}{R_{1}}internal gain lopenclosed loop lgain total loop gaingain | externalgainApplying K_{C L} at inverting terminal.\begin{array}{l}\frac{V_{I}-V_{C}}{10}+\frac{V_{I}-V_{\text {out }}}{100} \neq 0=0 \\V_{I}=\frac{10}{11} V_{S}+\frac{1}{11} V_{\text {out }} \\V_{\text {out }}=-10\left[\frac{10}{11} V_{S}+\frac{1}{11} V_{\text {out }}\right] \\\frac{V_{\text {out }}}{V_{S}}=-\frac{100}{21}=-4.76\end{array}\begin{array}{l}V_{G C} \text { Not Valid }\left(V_{N I} \neq V_{S}\right) \quad \quad A C_{L}=-4.76 \\\frac{V_{\text {out }}}{V_{S}}=? \\\text { Vout }=A_{O L}\left(V_{N I}-V_{I}\right) \\V_{\text {out }}=10\left(-V_{I}\right) \longrightarrow(1)\end{array}Non- inverting Amplifier:-Applying K C_{L} at inverting terminal\begin{array}{l}\frac{V_{S}-0}{R_{1}}+\frac{V_{S}-V_{\text {out }}}{R_{2}}=0 \\V_{S}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{V_{\text {out }}}{R_{2}} \\A_{C_{L}} \frac{V_{\text {out }}}{V_{S}}=\frac{1+R_{2}}{R_{1}}\end{array}     .................................................................................... I provided you complete and correct answers for your question.So, please encourage me by giving an Upvote. If u have any doubt or if u want anything else, please drop a comment here. Thank you:) ...