Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Draw the cross section with couple:Area of the part 1 ,{:[A_(1)=(80mm)(90mm)],[=7200mm^(2)]:}Area of the part 2 ,{:[A_(2)=(80mm)(30mm)],[=2400mm^(2)]:}Calculate the Total area of the cross section,{:[A=A_(1)+A_(2)],[=(7200mm^(2))+(2400mm^(2))],[=9600mm^(2)]:}Calculate the Moment of inertia of a rectangular part about any point,I=(bd^(3))/(12)+Ay_(i)^(2)Calculate the Moment of inertia of the part 1 about the y axis,{:[I_(y1)=(bd^(3))/(12)+A1y_(1)^(2)],[I_(y1)=((80)(90)^(3))/(12)+(7200)(0)^(2)],[=4.86 xx10^(6)mm^(4)]:}Calculate the Moment of inertia of the part 2 about the y axis,{:[I_(y2)=(bd^(3))/(12)+A_(2)y_(2)^(2)],[I_(y2)=((80)(30)^(3))/(12)+(2400)(0)^(2)],[=0.18 xx10^(6)mm^(4)]:}Calculate the Moment of inertia of the total cross section about the y axis,{:[I_(y)=I_(y1)+I_(y2)],[=(4.86 xx10^(6))+(0.18 xx10^(6))],[=5.04 xx10^(6)mm^(4)]:}Calculate the moment of inertia of the part 1 about the z axis,{:[I_(z1)=(bd^(3))/(12)+A_(1)z_(1)^(2)],[I_(z1)=((90)(80)^(3))/(12)+(7200)(20)^(2)],[=6.72 xx10^(6)mm^(4)]:}Moment of inertia of the part 2 about the z axis,{:[I_(z2)=(bd^(3))/(12)+A_(2)z_(2)^(2)],[I_(z2)=((30)(80)^(3))/(12)+(2400)(60)^(2)],[=9.92 xx10^(6)mm^(4)]:}Calculate the Moment of inertia of the total cross section about the y axis,{:[I_(z)=I_(z1)+I_(z2)],[=(6.72 xx10^(6))+(9.92 xx10^(6))],[=16.64 xx10^(6)mm^(4)]:}Component of the moment on the y axis,{:[M_(y)=M sin beta],[M_(y)=(25)sin 15^(@)],[=6.47kN*m],[=6.47 xx10^(6)N*mm]:}Component of the moment on the z axis,{:[M_(z)=M cos beta],[M_(z)=(25)cos 15^(@)],[=24.15kN*m],[=24.15 xx10^(6)N*mm]:}Calculate the Normal stress acting on any point due to the moment applied,sigma_(x)=-(M_(z)y)/(I_(z))+(M_(y)z)/(I_(y))(a)Calculate the Normal stress acting on the point A,{:[sigma_(A)=-(M_(z)y_(A))/(I_(z))+(M_(y)z_(A))/(I_(y))],[sigma_(A)=-((24.15 xx10^(6))(60))/(16.64 xx10^(6))+((6.47 xx10^(6))(45))/(5.04 xx10^(6))],[=-29.3N//mm^(2)],[sigma_(A)=-29.3MPa]:}(b)Calculate the Normal stress acting on the point B,{:[sigma_(B)=-(M_(z)y_(B))/(I_(z))+(M_(y)z_(B))/(I_(y))],[=-((24.15 xx10^(6))(60))/(16.64 xx10^(6))+((6.47 xx10^(6))(-45))/(5.04 xx10^(6))],[=-144.8N//mm^(2)],[sigma_(B)=-144.8MPa]:}(c)Calculate the Normal stress acting on the point D,{:[sigma_(D)=-(M_(z)y_(D))/(I_(z))+(M_(y)z_(D))/(I_(y))sigma_(D)],[=-((24.15 xx10^(6))(-100))/(16.64 xx10^(6))+((6.47 xx10^(6))(-15))/(5.04 xx10^(6))],[=125.9N//mm^(2)],[sigma_(D)=125.9MPa]:} ...