The couple M is applied to a beam of the cross section shown in a plane forming an angle b with the vertical. Determine the stress at (a) point A, (b) point B, (c) point D.

Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

Draw the cross section with couple:Area of the part 1 ,{:[A_(1)=(80mm)(90mm)],[=7200mm^(2)]:}Area of the part 2 ,{:[A_(2)=(80mm)(30mm)],[=2400mm^(2)]:}Calculate the Total area of the cross section,{:[A=A_(1)+A_(2)],[=(7200mm^(2))+(2400mm^(2))],[=9600mm^(2)]:}Calculate the Moment of inertia of a rectangular part about any point,I=(bd^(3))/(12)+Ay_(i)^(2)Calculate the Moment of inertia of the part 1 about the y axis,{:[I_(y1)=(bd^(3))/(12)+A1y_(1)^(2)],[I_(y1)=((80)(90)^(3))/(12)+(7200)(0)^(2)],[=4.86 xx10^(6)mm^(4)]:}Calculate the Moment of inertia of the part 2 about the y axis,{:[I_(y2)=(bd^(3))/(12)+A_(2)y_(2)^(2)],[I_(y2)=((80)(30)^(3))/(12)+(2400)(0)^(2)],[=0.18 xx10^(6)mm^(4)]:}Calculate the Moment of inertia of the total cross section about the y axis,{:[I_(y)=I_(y1)+I_(y2)],[=(4.86 xx10^(6))+(0.18 xx10^(6))],[=5.04 xx10^(6)mm^(4)]:}Calculate the moment of inertia of the part 1 about the z axis,{:[I_(z1)=(bd^(3))/(12)+A_(1)z_(1)^(2)],[I_(z1)=((90)(80)^(3))/(12)+(7200)(20)^(2)],[=6.72 xx10^(6)mm^(4)]:}Moment of inertia of the part 2 about the z axis,{:[I_(z2)=(bd^(3))/(12)+A_(2)z_(2)^(2)],[I_(z2)=((30)(80)^(3))/(12)+(2400)(60)^(2)],[=9.92 xx10^(6)mm^(4)]:}Calculate the Moment of inertia of the total cross section about the y axis,{:[I_(z)=I_(z1)+I_(z2)],[=(6.72 xx10^(6))+(9.92 xx10^(6))],[=16.64 xx10^(6)mm^(4)]:}Component of the moment on the y axis,{:[M_(y)=M sin beta],[M_(y)=(25)sin 15^(@)],[=6.47kN*m],[=6.47 xx10^(6)N*mm]:}Component of the moment on the z axis,{:[M_(z)=M cos beta],[M_(z)=(25)cos 15^(@)],[=24.15kN*m],[=24.15 xx10^(6)N*mm]:}Calculate the Normal stress acting on any point due to the moment applied,sigma_(x)=-(M_(z)y)/(I_(z))+(M_(y)z)/(I_(y))(a)Calculate the Normal stress acting on the point A,{:[sigma_(A)=-(M_(z)y_(A))/(I_(z))+(M_(y)z_(A))/(I_(y))],[sigma_(A)=-((24.15 xx10^(6))(60))/(16.64 xx10^(6))+((6.47 xx10^(6))(45))/(5.04 xx10^(6))],[=-29.3N//mm^(2)],[sigma_(A)=-29.3MPa]:}(b)Calculate the Normal stress acting on the point B,{:[sigma_(B)=-(M_(z)y_(B))/(I_(z))+(M_(y)z_(B))/(I_(y))],[=-((24.15 xx10^(6))(60))/(16.64 xx10^(6))+((6.47 xx10^(6))(-45))/(5.04 xx10^(6))],[=-144.8N//mm^(2)],[sigma_(B)=-144.8MPa]:}(c)Calculate the Normal stress acting on the point D,{:[sigma_(D)=-(M_(z)y_(D))/(I_(z))+(M_(y)z_(D))/(I_(y))sigma_(D)],[=-((24.15 xx10^(6))(-100))/(16.64 xx10^(6))+((6.47 xx10^(6))(-15))/(5.04 xx10^(6))],[=125.9N//mm^(2)],[sigma_(D)=125.9MPa]:} ...