The matrix A=[a h; h b] is transformed to the diagonal form D = T −1AT, where T=[cos θ sin θ; − sin θ cos θ]. Find value of θ which gives this diagonal transformation.
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
A=\left[\begin{array}{ll}a & h \\h & b\end{array}\right]\text { Diagaral form of } A=\left[\begin{array}{ll}a & 0 \\0 & b\end{array}\right]D=\left[\begin{array}{ll}a & 0 \\0 & b\end{array}\right]=T^{-1} A TGiven T=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\begin{array}{l}\text { A AT }=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{ll}a \cos \theta+h \sin \theta & -a \sin \theta+h \cos \theta \\h \operatorname{cs} \theta+b \sin \theta & -h \sin \theta+b \cos \theta\end{array}\right] \\=\left[\begin{array}{lr}a \operatorname{cs}^{2} \theta+h \cos \theta \sin \theta-h c \cos \theta \sin \theta-b \sin ^{2} \theta & -a \sin \theta \cos \theta+h \cos ^{2} \theta+h \sin ^{2} \theta \\a \sin \theta \cos \theta+h \sin ^{2} \theta+h \cos ^{2} \theta+b \cos \theta \sin \theta & -a \sin ^{2} \theta+h \sin \theta \cos \theta \\& -h \cos \theta \sin \theta+b \cos ^{2} \theta\end{array}\right] \\=\left[\begin{array}{ll}a \cos ^{2} \theta-b \sin ^{2} \theta & -a \sin \theta \cos \theta+h\left(\cos ^{2} \theta+\sin ^{2} \theta\right)-b \sin \theta \operatorname{cs} \theta \\a \sin \theta \cos \theta[a+b]+h\left[\cos ^{2} \theta+\sin ^{2} \theta\right] & -a \sin ^{2} \theta+b \cos ^{2} \theta\end{array}\right] \\=\left[\begin{array}{cc}a \operatorname{cs}^{2} \theta-b \sin ^{2} \theta & -a \sin \theta \cos \theta+h-b \sin \theta \cos \theta . \\\sin \theta \operatorname{cs} \theta(a+b)+h & -a \sin ^{2} \theta+b \operatorname{cs}^{2} \theta\end{array}\right] . \\\end{array}To Traustiom Thir to a Diggnal matrine=\left[\begin{array}{cc}a \cos ^{2} \theta-b \sin ^{2} \theta & \sin \theta c \operatorname{cs} \theta(-a-b)+h \\\sin \theta c \operatorname{cs} \theta(a+b)+h & -a \sin ^{2} \theta+b \cos ^{2} \theta\end{array}\right]escocos (-x-b) x=h\begin{array}{l}=\left[\begin{array}{cc}a \csc ^{2} \theta-b \sin ^{2} \theta & 0 \\0 & -a \sin ^{2} \theta+b c^{2} \theta\end{array}\right] \\\theta=90^{\circ} \text { (or) } 0^{\circ}, h=0 \\=\left[\begin{array}{cc}a-0 & 0 \\0 & -a\end{array}\right] \text { when } \theta=0^{\circ} \\=\left[\begin{array}{cc}-b & 0 \\0 & +b\end{array}\right] \text { shen } \theta=90^{\circ}\end{array} ...