Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

1] Total size of file =25,000,000 bytes\begin{array}{l}\text { UDP header }=8 \text { bytes } \\\text { IPV4 header }=20 \text { bytes } \\\text { packet size }=1500 \text { bytes }\end{array}payload + uDp header should be multiple of 8 . Hence it is 1480 bytes.\Rightarrow 1480+20 (ip headen) =1500 bytes which is exactly the packet size.\begin{aligned}\text { Actual data in } 1480 \text { bytes } & =1480-8 \\= & 1472 \text { bytes pen packet } .\end{aligned}\therefore The total no. of if packets to be sent is\begin{array}{l}=\frac{25000000}{1472} \\=16984 \text { packets. }\end{array}A]\begin{array}{l}\text { frame size }=1500 \text { bytes } \\\begin{aligned}\text { frame header } & =14 \text { bytes } \\\text { payload data } & =1500-14 \\& =1486 \text { bytes }\end{aligned}\end{array}Numben of frames needed to transfen\begin{aligned}28000000 \text { bytes } & =\frac{28000000}{1486} \\& =18842 \text { frames }\end{aligned}18842 frames will contain maximum payroad. While the last frame will Contains only 14 bytes header and remaining payload data.Number of bytes of payload data carry\text { by last frame } \begin{aligned}& =28000000-18842 \times 1486 \\& =788 \text { bytes }\end{aligned}\begin{aligned}\text { size of last frame } & =788+\text { headen size } \\& =788+14 \\& =802 \text { bytes }\end{aligned}Total amount of data send oven data\begin{aligned}\text { hink layen } & =1500 \times 18842+802 \\& =28263802 \text { bytes. }\end{aligned}Given M T U=1500 bytes\begin{aligned}\text { IPvy header } & =20 \text { bytes } \\\text { UDP header } & =8 \text { bytes } \\\text { size of file } & =26000000 \\\text { NDP pay 10ad } & =1500-(20+8) \\& =1500-28 \\& =1472 \text { bytes. }\end{aligned}Total number of ip packeks required to send 26000000 bytes\begin{aligned}\text { of data } & =\frac{26000000}{1475} \\& =17627 \text { bytes. }\end{aligned} ...