Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
ELEMENT 1:- CYLINDER\text { Volume } \begin{aligned}V_{1} & =\frac{\pi}{4} \times 2.5^{2} \times 8 \\V_{1} & =39.25 \text { in }^{3}\end{aligned}CENTER OF GRAVITY CO-ORDINATES W.R-T. GIVEN REFERENCE\begin{array}{l}y_{1}=\frac{8}{2}=4 \text { in } \\y_{1}=0 \text { in } \\x_{1}=0 \text { in }\end{array}ELEMENT2:- CYLINDER HOLE\text { Vocume } \begin{aligned}v_{2} & =\frac{\pi}{4} \times 6 \times 1.5^{2} \\v_{2} & =10.5975 \text { in }^{3}\end{aligned}\begin{array}{r}z_{2}=\frac{6}{2}=\sin \\y_{2}=0 ; x_{2}=0\end{array}ELEMENT 3:- RIGHT CIRCLUAR CONE\begin{array}{l}v_{3}=\frac{\pi \times 2.5^{2} \times 6}{12}=9.8125 \mathrm{in}^{3} \\z_{3}=8+\frac{6}{4}=9.5 \mathrm{in} \\y_{3}=0 ; x_{3}=0\end{array}GIVENDENSITY of\begin{array}{l}\text { STEL } C_{S}=489 \mathrm{lb} / \mathrm{ft}^{3} \\\text { CoppER } P_{C}=556 \mathrm{lb} / \mathrm{ft} \mathrm{t}^{3}\end{array}THERE FORE CENTRE OF GRAVITY of ASSEMBLY\begin{array}{l}\bar{z}=\frac{\rho_{s} v_{1} z_{1}-\rho_{s} v_{2} z_{2}+e_{c} v_{3} z_{3}}{\rho_{s} v_{1}-\rho_{s} v_{2}+\rho_{c} v_{3}} \\\bar{z}=\frac{(76773-15546.5325+51829.625)}{5455.75)} \\=(19193.25-5182.1775+ \\\bar{z}=5.808 \text { in } \\\bar{x}=0 \\\bar{y}=0\end{array} ...