Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
The deflection and the forces supported by springs are calculated and the results are shown below in detail. Given:(1)\begin{array}{ll}m_{A}=56 \mathrm{~kg} & k_{1}=100 \mathrm{~N} / \mathrm{mm} \\m_{B}=86 \mathrm{~kg} & k_{2}=120 \mathrm{~N} / \mathrm{mm} \\k_{3}=140 \mathrm{~N} / \mathrm{mm}\end{array}Solution:Drow the free body diagram of mass A.\begin{array}{l}\text { Draw the free body diagram of mas } \\100 \delta_{A}-(56 \times 9.81)-120\left(\delta_{B}-\delta_{A}\right)=0 \\100 \delta_{A}-549.36-120 \delta_{B}+120 \delta_{A}=0 . \\220 \delta_{A}-120 \delta_{B}=549.36 \\\left.220 \delta_{A}=549.36+120 \delta_{B}-\delta_{A}\right)=0 \\\delta_{A}=2.497+0.545 \delta_{B} .\end{array}m_{B} g \quad k_{2}\left(\delta_{B}-\delta_{A}\right)Draw the free body diagram of mass B. m\begin{array}{l}\Sigma F_{y}=0 \\k_{2}\left(\delta_{B}-\delta_{A}\right)+k_{3} \delta_{B}-m_{B} g=0 . \\120\left(\delta_{B}-\delta_{A}\right)+140 \delta_{B}-(86 \times 9.81)=0 . \\120 \delta_{B}-120\left(2.497+0.545 \delta_{B}\right)+140 \delta_{B} \\-843.66=0 . \\120 \delta_{B}-299067-65.4 \delta_{B}+140 \delta_{B}-843.66=0 . \\194.6 \delta_{B}=1143.33 . \\\left.* \delta_{B}-\delta_{A}\right) \\* \delta_{B}=5.875 \mathrm{~mm} .\end{array}k_{B} \delta_{B} \quad M_{B g}sub \delta_{B} in eqn (1).(2)\begin{aligned}\delta_{A} & =2.497+0.545 \delta_{B} \\& =2.497+0.545(5.875) . \\* \delta_{A} & =5.699 \mathrm{~mm} *\end{aligned}Force supported by spring 1:\begin{aligned}F_{1}=k_{1} \delta_{A} & =100 \times 5.699 . \\F_{1} & =569.9 \mathrm{~N} .\end{aligned}Force supported by spring 2:\begin{array}{c}F_{2}=k_{2}\left(\delta_{B}-\delta_{A}\right)=120(5.875-5.699) \\F_{2}=21.12 \mathrm{~N}\end{array}Force supported by spring 3:\begin{array}{c}F_{3}=K_{3} \delta_{B}=140(5.875) \\F_{3}=822.5 \mathrm{~N}\end{array} ...