The vapor pressure of an unknown solid is given by ln(P/Torr)=22.413−(2211/T), and the vapor pressure of the liquid phase of the same substance is approximately given by ln(P/Torr)=18.352−(1736/T). Determine the enthalpy of vaporization, the enthalpy of sublimation, and the enthalpy of fusion. Then calculate the triple point temperature and pressure
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Step 1Enthalpy of vaporization and enthalpy of sublimation can be calculated as follows:\begin{array}{l}\ln (P)=22.413-\frac{2211}{T} \\\ln (P)=\text { constant }-\frac{\Delta \mathrm{H}_{\text {sublimation }}}{\mathrm{R}}\end{array}For the given solid,\begin{array}{l}\frac{\Delta \mathrm{H}_{\text {sublimation }}}{\mathrm{R}}=2211 \\\Delta \mathrm{H}_{\text {sublimation }}=2211 \times 8.314 \mathrm{~J} / \mathrm{molK} \\\Delta \mathrm{H}_{\text {sublimation }}=18.38 \times 10^{3} \mathrm{Jmol}^{-1}\end{array}For the liquid.\begin{array}{l}\frac{\Delta H_{\text {vaporization }}}{\mathrm{R}}=1736 \\\Delta \mathrm{H}_{\text {vaporization }}=1736 \times 8.314 \mathrm{~J} / \mathrm{molK} \\\Delta \mathrm{H}_{\text {vaporization }}=14.43 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\end{array}Step 2Enthalpy of fusion can be calculated as\begin{aligned} \Delta \mathrm{H}_{\text {fusion }} & =\Delta \mathrm{H}_{\text {sublimation }}-\Delta \mathrm{H}_{\text {vaporization }} \\ & =18.38 \times 10^{3} \mathrm{Jmol}^{-1}-14.43 \times 10^{3} \mathrm{Jmol}^{-1} \\ & =3.95 \times 10^{3} \mathrm{Jmol}^{-1}\end{aligned}Step 3Triple point temperature and pressure can be calculated as\begin{array}{l}22.413-\frac{2211}{\mathrm{~T}_{\mathrm{tp}}}=18.352-\frac{1736}{\mathrm{~T}_{\mathrm{tp}}} \\ 4.061=\frac{475}{\mathrm{~T}_{\mathrm{tp}}} \\ \mathrm{T}_{\mathrm{tp}}=116.97 \mathrm{~K}\end{array}\begin{array}{l}\ln \frac{P_{t p}}{\text { Torr }}=22.413-\frac{2211}{116.97} \\ \ln \frac{P_{t p}}{\text { Torr }}=3.511 \\ \mathrm{P}_{\mathrm{tp}}=33.48 \text { Torr }\end{array} ...