Solved 2 Answers
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Sam:-we apply Egulibirium Equition.\begin{array}{c}\sum F_{x}=0, \quad \sum F_{y}=0 \\94.5 \cos \alpha-60-50 \cos \theta=0 \\50 \sin \theta-94.5 \sin \alpha=0 \\\sin \theta=\frac{94.5}{50} \sin \alpha \\94.5 \sin \alpha 50\end{array}find \cos \theta\begin{array}{l} A C^{2}=A B^{2}+B C^{2} \\50^{2}=(94.5 \sin \alpha)^{2}+B C^{2} \\\sqrt{(50)^{2}-(94.5 \sin \alpha)^{2}}=B C \\\cos \theta 0=\frac{\sqrt{(50)^{2}-(94 \cdot 5 \sin \alpha)^{2}}}{50}\end{array}put this value of \cos \theta in \operatorname{eqn}(i)Thank you \begin{array}{l}\Rightarrow \quad 94.5 \cos \alpha-60-50 \times \frac{\sqrt{(50)^{2}}-(94.5 \sin \alpha)^{2}}{50}=0 \\\Rightarrow 94 \cdot 5 \cos 2-60=\sqrt{(50)^{2}-(94.5 \sin 2)^{2}} \\\Rightarrow(94.5 \cos \alpha-60)^{2}=(50)^{2}-(94.5 \sin \alpha)^{2} \\\Rightarrow(94 \cdot 5 \cos 2)^{2}+(60)^{2}-2 \times 94 \cdot 5 \cos 2 \times 60=(50)^{2}-(94.5 \sin \alpha)^{2} \\\Rightarrow(94.5 \cos \alpha)^{2}+(94.5 \sin \alpha)^{2}-2 \times 94.5 \cos 2 \times 60=(50)^{2}-(60)^{2} \\\Rightarrow(94.5)^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)-11,340 \cos \alpha=(50)^{2}-(60)^{2} \\\Rightarrow \quad-11340 \cos \alpha=(50)^{2}-(60)^{2}-(94.5)^{2} \\-11340 \cos \alpha=-10,030.25 \\\cos \alpha=0.8845 \\\alpha=\$ 5227.809 \\\end{array}\Rightarrow horizontal component of forle 94.5 isF_{H}=94.5 \cos \alpha=83.585 ...