Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Problen 1:\Rightarrow Three isotropic sources spacon 'd along z-acis.\Rightarrow Center element is 2d=\lambda / 4Solulion:Frion given, number of elemenis, P=3\begin{aligned}\therefore \quad 2 M+1 & =P \\2 M+1 & =3 \\M & =1\end{aligned}(a) Array factor:\Rightarrow Excitation can be eocpressed as,\begin{array}{l}E_{t}=E_{1}+E_{2}+E_{3} \\E_{t}=2 E_{0} \frac{e^{-j k \gamma}}{\gamma}+E_{0} \frac{e^{-j k r_{1}}}{\gamma_{1}}+E_{0} \frac{e^{-j k r_{2}}}{r_{2}}\end{array}For field \Rightarrow \quad r_{1}=r_{2}=r \rightarrow Amphtude\begin{array}{l}\gamma_{1}=\tau-d \cos \theta \rightarrow \text { phase } \\\gamma_{2}=\gamma+d \cos \theta \rightarrow \text { phase }\end{array}\Rightarrow substirute the respecttve values in excitation equation.\begin{array}{l}E_{t}=2 E_{0} \frac{e^{-j k \gamma}}{\gamma}+E_{0} \frac{e^{-j k(\tau-d \cos \theta)}}{\gamma}+E_{0} \frac{e^{-j k(\gamma+d \cos \theta)}}{\gamma} \\E_{t}=E_{0} e^{-j k \tau}\left[2+e^{j k d \cos \theta}+e^{-j k d \cos \theta}\right] \\E_{t}=E_{0} \frac{e^{-j k r}}{r}\left[2\left(1+\frac{1}{2} e^{j j k d \cos \theta}+\frac{1}{2} e^{-j k d \cos \theta}\right]\right. \\E_{t}=E_{0} \frac{e^{-j k \gamma}}{\gamma}[2+2 \cos (k d \operatorname{coc} \theta)] \\E_{t}=2 E_{0} \frac{e^{-j k \gamma}}{\gamma}(1+\cos (k d \cos \theta)) \\E_{t}=E_{0} \frac{e^{-j k r}}{r}[2(1+\cos (k d \cos 0))] \\\end{array}Array factor.\begin{aligned}A F(\theta) & =2[1+\cos (K d \cos \theta)] \\& =2\left(2 \cos ^{2}\left(\frac{K d}{2} \cos \theta\right)\right) \\& =4 \cos ^{2}\left(\frac{k d}{2} \cos \theta\right)\end{aligned}Normalized form is:\begin{aligned}\operatorname{AF}\left(\theta_{n}\right) & =\frac{A F(\theta)}{2} \\& =2 \cos ^{2}\left(\frac{k d}{2} \cos \theta\right)\end{aligned}(b) Angle in degrees where nulls occur 0^{\circ} \leq \theta \leq 160^{\circ} :\Rightarrow Drray factor: A F(\theta) \Rightarrow 2(1+\cos (k d \cos \theta))=0\begin{array}{l}\therefore 1+\cos \left(k d \cos \theta_{n}\right)=0 \\\cos \left(k d \cos \theta_{n}\right)=-1 \\k d\left(\cos \theta_{n}\right)=\cos ^{-1}(-1) \\k d\left(\cos \theta_{n}\right)=n \pi \quad, n= \pm 1, \pm 3, \cdots \\\left(\frac{2 \pi}{\lambda}\right)\left(\frac{\lambda}{4}\right) \cos \theta_{n}=n \pi \\\frac{\pi}{2} \cos \theta_{n}=n \pi \Rightarrow \cos \theta_{n}=2 n \\\theta_{n}=\cos ^{-1}(2 n) \text { for } n= \pm 1, \pm 3 . \pm 5, \ldots\end{array}\Rightarrow For such condition no null can exists.(c) Angle where maxima of pattern occur 0^{\circ} \leqslant \theta \leqslant 180^{\circ}.Amray factor for maxcimasA F(\theta)=1+\cos (\text { kd } \cos \theta m)=2\cos (k d \cos \theta m)=2-1\text { kd } \begin{aligned}\cos \theta m & =\cos ^{-1}(1) \\\text { kd } \cos \theta m & =2 m \pi, m=0, \pm 1, \pm 2, \ldots \\\left(\frac{2 \pi}{\lambda}\right)\left(\frac{\lambda}{4}\right) \cos \theta m & =2 m \pi \\\left(\frac{\pi}{2}\right) \cos \theta m & =2 m \pi \\\pi(\cos \theta m) & =14 \pi \\\cos \theta m & =4 m \\\theta m & =\cos ^{-1}(14 m) \quad m=0, \pm 1, \pm 0,\end{aligned}\Rightarrow angle can exists at " \theta " of m=0\theta m=\cos ^{-1}(0)Macuma angle, \theta m=90^{\circ} ...