Three isotropic sources, with spacing d between them, are placed along the z-axis. The excitation coefficient of each outside element is unity while that of the center element is 2. For a spacing of d = ?/4 between the elements, find the (a) array factor (b) angles (in degrees) where the nulls of the pattern occur (0? = ?? = 180?) (c) angles (in degrees) where the maxima of the pattern occur (0? = ?? = 180?) (d) directivity using the computer program Directivity of Chapter 2.

Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

Problen 1:\Rightarrow Three isotropic sources spacon 'd along z-acis.\Rightarrow Center element is 2d=\lambda / 4Solulion:Frion given, number of elemenis, P=3\begin{aligned}\therefore \quad 2 M+1 & =P \\2 M+1 & =3 \\M & =1\end{aligned}(a) Array factor:\Rightarrow Excitation can be eocpressed as,\begin{array}{l}E_{t}=E_{1}+E_{2}+E_{3} \\E_{t}=2 E_{0} \frac{e^{-j k \gamma}}{\gamma}+E_{0} \frac{e^{-j k r_{1}}}{\gamma_{1}}+E_{0} \frac{e^{-j k r_{2}}}{r_{2}}\end{array}For field \Rightarrow \quad r_{1}=r_{2}=r \rightarrow Amphtude\begin{array}{l}\gamma_{1}=\tau-d \cos \theta \rightarrow \text { phase } \\\gamma_{2}=\gamma+d \cos \theta \rightarrow \text { phase }\end{array}\Rightarrow substirute the respecttve values in excitation equation.\begin{array}{l}E_{t}=2 E_{0} \frac{e^{-j k \gamma}}{\gamma}+E_{0} \frac{e^{-j k(\tau-d \cos \theta)}}{\gamma}+E_{0} \frac{e^{-j k(\gamma+d \cos \theta)}}{\gamma} \\E_{t}=E_{0} e^{-j k \tau}\left[2+e^{j k d \cos \theta}+e^{-j k d \cos \theta}\right] \\E_{t}=E_{0} \frac{e^{-j k r}}{r}\left[2\left(1+\frac{1}{2} e^{j j k d \cos \theta}+\frac{1}{2} e^{-j k d \cos \theta}\right]\right. \\E_{t}=E_{0} \frac{e^{-j k \gamma}}{\gamma}[2+2 \cos (k d \operatorname{coc} \theta)] \\E_{t}=2 E_{0} \frac{e^{-j k \gamma}}{\gamma}(1+\cos (k d \cos \theta)) \\E_{t}=E_{0} \frac{e^{-j k r}}{r}[2(1+\cos (k d \cos 0))] \\\end{array}Array factor.\begin{aligned}A F(\theta) & =2[1+\cos (K d \cos \theta)] \\& =2\left(2 \cos ^{2}\left(\frac{K d}{2} \cos \theta\right)\right) \\& =4 \cos ^{2}\left(\frac{k d}{2} \cos \theta\right)\end{aligned}Normalized form is:\begin{aligned}\operatorname{AF}\left(\theta_{n}\right) & =\frac{A F(\theta)}{2} \\& =2 \cos ^{2}\left(\frac{k d}{2} \cos \theta\right)\end{aligned}(b) Angle in degrees where nulls occur 0^{\circ} \leq \theta \leq 160^{\circ} :\Rightarrow Drray factor: A F(\theta) \Rightarrow 2(1+\cos (k d \cos \theta))=0\begin{array}{l}\therefore 1+\cos \left(k d \cos \theta_{n}\right)=0 \\\cos \left(k d \cos \theta_{n}\right)=-1 \\k d\left(\cos \theta_{n}\right)=\cos ^{-1}(-1) \\k d\left(\cos \theta_{n}\right)=n \pi \quad, n= \pm 1, \pm 3, \cdots \\\left(\frac{2 \pi}{\lambda}\right)\left(\frac{\lambda}{4}\right) \cos \theta_{n}=n \pi \\\frac{\pi}{2} \cos \theta_{n}=n \pi \Rightarrow \cos \theta_{n}=2 n \\\theta_{n}=\cos ^{-1}(2 n) \text { for } n= \pm 1, \pm 3 . \pm 5, \ldots\end{array}\Rightarrow For such condition no null can exists.(c) Angle where maxima of pattern occur 0^{\circ} \leqslant \theta \leqslant 180^{\circ}.Amray factor for maxcimasA F(\theta)=1+\cos (\text { kd } \cos \theta m)=2\cos (k d \cos \theta m)=2-1\text { kd } \begin{aligned}\cos \theta m & =\cos ^{-1}(1) \\\text { kd } \cos \theta m & =2 m \pi, m=0, \pm 1, \pm 2, \ldots \\\left(\frac{2 \pi}{\lambda}\right)\left(\frac{\lambda}{4}\right) \cos \theta m & =2 m \pi \\\left(\frac{\pi}{2}\right) \cos \theta m & =2 m \pi \\\pi(\cos \theta m) & =14 \pi \\\cos \theta m & =4 m \\\theta m & =\cos ^{-1}(14 m) \quad m=0, \pm 1, \pm 0,\end{aligned}\Rightarrow angle can exists at " \theta " of m=0\theta m=\cos ^{-1}(0)Macuma angle, \theta m=90^{\circ} ...