Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Soln:- \mathbb{H}^{-}\left\{\frac{4 s+10}{s^{2}+5 s+6} e^{-2 s}\right\}first we take the partial fraction we get.\begin{array}{l}\frac{4 s+10}{s^{2}+5 s+6}=\frac{4 s+10}{(s+2)(s+3)} \\\frac{4 s+10}{(s+2)(s+3)}=\frac{A}{(s+2)}+\frac{B}{(s+3)} \\4 s+10=A(s+3)+B(s+2) . \\4 s+10=(A+B) s+(3 A+2 B) \\A+B=4, \quad S A+2 B=10\end{array}Solving this we get A=2 and B=2.\begin{array}{l} \frac{4 s+10}{(s+2)(s+3)}=\frac{2}{s+2}+\frac{2}{s+3} \\\therefore\left\{\frac{2}{s+2}+\frac{2}{s+3}\right\}\end{array}lsing linear property we get.\begin{array}{l}\text { L. }\left\{\frac{s s+10}{(s+2)(s+3)}\right\}=2 L\left\{\left\{\frac{1}{s+2}\right\}+2 t+\left\{\frac{1}{s+3}\right\}\right. \\=2 e^{-2 t}+2 e^{-3 t} \text {. (1) } \\\end{array}Apply inverse transform fule: if (1\{F(1))=f(t) then1 *\left\{e^{-a s} f(s)\right\}=h(t-a) f(t-a)where H(t) is heaviside step funcsion.=H(t-2) t^{-1}\left\{\frac{s+10}{s^{2}+51+6}\right\}(t-2) \text {. }hene laplace inverse transform in u(t-c) of e^{-x} \frac{\$ s+10}{s^{2}+5 s+6} is=v(t-2) 2 e^{-2(t-2)}+u(t-2) e^{-3(t-2)}=2 U(t-2)\left(e^{-2(t-2)}+e^{-3(t-2)}\right) \text {. Req sor.. }if you found result is usefure then mz like ...