Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Ansy^{\prime \prime}-x y^{\prime}-3 y=0A linear homogerious ODE with constant coefficients\begin{array}{l}p(x) y^{\prime \prime}+q(x) y^{\prime}+\gamma(x) y=0 \\p(x)=1, q(x)=-x, \gamma(x)=-3 .\end{array}plug in x=0 in p(x)=1p(0)=1(0) \neq 0, there fore None.assume a solution form y=\sum_{k=0}^{\infty} a_{k} x^{k}y^{\prime}=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)^{1}Rewrite as y^{\prime}=\left(a_{0}+\sum_{k=1}^{\infty} a_{k} x^{k}\right)^{!}(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime} \Rightarrow y^{\prime}=\left(a_{0}\right)^{\prime}+\sum_{k=1}^{\infty} a_{k} k x^{k-1}y^{\prime}=0+\sum_{k=1}^{\infty} a_{k} k x^{k-1}simplify y^{\prime}=\sum_{k=1}^{\infty} a_{k} k x^{k-1}\begin{aligned}y^{\prime \prime} & =\left(\sum_{k=1}^{\infty} a_{k} k x^{k-1}\right)=\left(a_{1}+\sum_{k=2}^{\infty} a_{k} x^{k-1}\right)^{\prime} \\y^{\prime \prime} & =\left(a_{1}\right)^{\prime}+f_{k=2}^{\infty}+g^{\prime} a_{k} a_{k} x^{k-1}(k-1)\end{aligned}a_{1}^{\prime}=0,\left(a_{k} k x^{k-1}\right)^{\prime}=a_{k}^{k x^{k-2}(k-1)}y^{\prime \prime}=0+\sum_{k=2}^{\infty} a k^{k}(k-1) x^{k-2}simplifyy^{\prime \prime}=\sum_{k-2}^{\infty} a_{k} k(k-1) x^{k-2}plug into y^{\prime \prime}-x y^{\prime}-3 y=0\sum_{=2}^{\infty} a_{k} k(k-1) x^{k-2}-x \cdot\left(\sum_{k=1}^{\infty} a_{k}+k^{k-1}\right)-3 \sum_{k=0}^{\infty} a_{k} x^{k}=0iimplify=2 a_{k} k(k-1) x^{k-2}-\sum_{k=1}^{\infty} k a_{k^{x}} x^{k}-\sum_{k=0}^{\infty} 3 a k^{x^{k}}Rewrile starting k=0, and power of x shitting.=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}-\sum_{k=0}^{\infty} k a_{k^{2}}-\sum_{k=0}^{\infty} 3 a_{k^{x}}^{k}implify=\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)-k a_{k}-3 a_{k}\right) 2^{k}powerseries equat to zero, cocffeccient olso 0\begin{array}{l}a_{k+2}(k+2)(k+1)-1 a_{k}-3 a_{k}=0 \\a_{k+2}(k+2)(k+1)=+\left(+k a_{k}-3 a_{k}\right)\end{array}Divide by bothsides (k+2)(k+1)\begin{array}{l} \frac{a_{k+2}(k+2)(k+1)}{(k+2)(k+1)} \cdot \frac{k a_{k}-3 a_{k}}{(k+2)(k+1)} \\a_{k+2}=\frac{+a_{k}(k+3)}{(k+2)(k+1)} \\a_{k}=\frac{a_{k-2}(k+1)}{(k-1) k}\end{array}solve\begin{aligned}a_{2} n & =\frac{a_{2 n}-2(2 n+1)}{(2 n-1) \cdot 2 n} \\a_{2} & =\frac{a_{0}(3)}{(1)(2)} \\a_{4} & =\frac{a_{2}(5)}{(3)(4)}=\frac{a_{0} 5}{(1)(2)(4)} \\& \vdots \\a_{2 n} & =\frac{a_{0}(5)(2 n+1)}{(1)(2)(4) \ldots(2 n-1)(2 n)}\end{aligned}Therefore the solution isy_{1}=a_{0}\left(1+\frac{x^{2}(3)}{(1)(1)}+\frac{x^{4}(5)}{(1)(2)(4)}+\cdots+\frac{x^{2 n}(5)}{(1)(2)(4) \ldots}+\cdots\right.simplifyy_{1}=a_{0}\left(1+\frac{3 x^{2}}{2}+\frac{5 x y}{8}+\cdots+\frac{x^{2 n}(5)(2 n+1)}{(1)(2)(4)-(2 n-1)}\right)ao replaced with c_{1}y_{1}=c_{1}\left(1+\frac{3 x^{2}}{2}+\frac{5 x^{4}}{8}+\cdots-\frac{x^{2 n(5) \cdot(2 n+1)}+\cdots}{(1)(2)(4) \ldots(2 n-1)}\right)solve for k=2 n+1\begin{array}{l}a_{2 n+1}=\frac{a_{2 n-1}(n+1)}{n(2 n+1)} \\a_{3}=\frac{a_{1}(4)}{(2)(3)} \\a_{5}=\frac{a_{3}(6)}{(4)(5)}=\frac{a_{1}(6)}{(2)(5)(5)} \\1 \\a_{2} n+1=\frac{a_{1}(6)(n+1)}{(2)(3)(5) \ldots n(2 n+1)}\end{array}y_{2}=a_{1}\left(x+\frac{x^{3}(4)}{(2)(3)}+\frac{x^{5}(6)}{(2)(3)(5)}+\cdots+\frac{x^{2 n+1}(6)(n+1)}{(2)(3)(5)-n(2 n+1)}\right.Simplifyy_{2}=a_{1}\left(x+\frac{2 x^{3}}{3}+\frac{x^{5}}{5}+\cdots+\frac{x^{2 n+1}(6)(n+1)}{(2)(3)(5) \ldots n(2 n+1)}+\cdots\right)a_{1} replaced with c_{2}\begin{array}{l} y_{2}=c_{2}\left(x+\frac{2 x^{3}}{3}+\frac{x^{5}}{5}+\cdots+\frac{x^{2 n+1}(6)(n+1)}{(2)(3)(5) \cdots n(2 n+1)}\right)^{+\cdots} \\y=c_{1}\left(1+\frac{3 x^{2}}{2}+\frac{5 x^{4}}{8}+\cdots+\frac{x^{2 n}(5)(2 n+1)}{(1)(2)(4) \ldots(2 n-1)(2 n)}+\cdots\right. \\+c_{2}\left(x+\frac{2 x^{3}}{3}+\frac{x^{5}}{5}+\cdots+\frac{x^{2 n+1}(6)(n+1)}{(2)(3)(5) \cdots n(2 n+1)}+\cdots\right. \\y_{1}=\left(1+\frac{3}{2} x^{2}+\frac{5}{8} x^{4}+\cdots+\frac{x^{2 n}(5)(2 n+1)}{(1)(2)(4) \cdots(2 n-1)(n)}\right. \\y_{2}=\left(x+\frac{2}{3} x^{3}+\frac{x^{5}}{5}+\cdots+\frac{x^{2 n+1}(6)(n+1)}{}+\cdots\right)(3)(5) \cdots n(2 n+1)\end{array}Thank yowplease give me upvote ...