# Question Solved1 AnswerUsc the Composite Midpoint rule with n+2 subintervals to approximate the integrals in Excrcisc 2 .>Use the Composite Trapezoidal rule with the indicated values of n to approximate the following integrals. a. $\int_{-0.5}^{0.5} \cos ^{2} x d x, \quad n=4$ b. $\int_{-0.5}^{0.5} x \ln (x+1) d x, \quad n=6$ c. $\int_{.75}^{1.75}\left(\sin ^{2} x-2 x \sin x+1\right) d x, \quad n=8 \quad$ d. $\quad \int_{e}^{e+2} \frac{1}{x \ln x} d x, \quad n=8$

SPO1UM The Asker · Other Mathematics
Usc the Composite Midpoint rule with   n+2   subintervals to approximate the integrals in Excrcisc 2 .>Use the Composite Trapezoidal rule with the indicated values of   n   to approximate the following integrals.
a.   $\int_{-0.5}^{0.5} \cos ^{2} x d x, \quad n=4$
b.   $\int_{-0.5}^{0.5} x \ln (x+1) d x, \quad n=6$
c.   $\int_{.75}^{1.75}\left(\sin ^{2} x-2 x \sin x+1\right) d x, \quad n=8 \quad$   d.   $\quad \int_{e}^{e+2} \frac{1}{x \ln x} d x, \quad n=8$
Transcribed Image Text: Usc the Composite Midpoint rule with n+2 subintervals to approximate the integrals in Excrcisc 2 .>Use the Composite Trapezoidal rule with the indicated values of n to approximate the following integrals. a. $\int_{-0.5}^{0.5} \cos ^{2} x d x, \quad n=4$ b. $\int_{-0.5}^{0.5} x \ln (x+1) d x, \quad n=6$ c. $\int_{.75}^{1.75}\left(\sin ^{2} x-2 x \sin x+1\right) d x, \quad n=8 \quad$ d. $\quad \int_{e}^{e+2} \frac{1}{x \ln x} d x, \quad n=8$
More
Transcribed Image Text: Usc the Composite Midpoint rule with n+2 subintervals to approximate the integrals in Excrcisc 2 .>Use the Composite Trapezoidal rule with the indicated values of n to approximate the following integrals. a. $\int_{-0.5}^{0.5} \cos ^{2} x d x, \quad n=4$ b. $\int_{-0.5}^{0.5} x \ln (x+1) d x, \quad n=6$ c. $\int_{.75}^{1.75}\left(\sin ^{2} x-2 x \sin x+1\right) d x, \quad n=8 \quad$ d. $\quad \int_{e}^{e+2} \frac{1}{x \ln x} d x, \quad n=8$