Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Step1/3a. let,Hence, ∫0π​(sinx+cosx)dx = 2Step2/3a. let,Hence, ∫0π​(sinx+cosx)dx = 2b. ∫12​(x+sin4x)dxLet,Now let's consider ∫12​(sin4x)dx = BLet's put 4x = ti.e. 4dx = dti.e. dx =1/4 dtsubstituting we get,But t = 4xCombine    and   .  Combine    and   .  Multiply   .  The result can be shown in multiple forms.Exact Form:  Decimal Form:   Hence, ∫12​(x+sin4x)dx = 1.5018Step3/3a. let,Hence, ∫0π​(sinx+cosx)dx = 2b. ∫12​(x+sin4x)dxLet,Now let's consider ∫12​(sin4x)dx = BLet's put 4x = ti.e. 4dx = dti.e. dx =1/4 dtsubstituting we get,But t = 4xCombine    and   .  Combine    and   .  Multiply   .  The result can be shown in multiple forms.Exact Form:  Decimal Form:   Hence, ∫12​(x+sin4x)dx = 1.5018d. ∫0π/2​(6cos4x+4sin6x)exdx = I i.e. I = I1 + I2Solving I1,and solving I2, we get,Explanation:Hence, the solutions of a,b, and d are given ...