USe Newton-Raphson method to approximate the root of
f(x)=3x + sin (x) -e^x
Use initial guess x0 =2.0 and compute 3 iterations. for
each iteration, compute the relative percentage error .
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
GIVEN : f(x) = 3x + sin (x) - ex.  [ This gives : f'(x) = 3 + cos(x) - ex ] x0 = 2.0 n = 3 WE KNOW : Relative error at each step is given by :                           \epsilon_{\text {relative }}=\frac{\left|x_{i}-x_{i-1}\right|}{x_{i}} STEP 1 : x0 = 2.0  f(x0) = 3(2) + sin(2) - e2 = - 0.479759 f'(x0) = 3 + cos(2) - e2 = - 4.805203 x1 = x0 - f(x0) / f'(x0) = 1.900158 \epsilon_{\text {relative }}=\frac{\left|x_{i}-x_{i-1}\right|}{x_{i}}=\frac{|1.900158-2|}{1.900158}=0.052505 STEP 2 : x1 = 1.900158 f(x1) = 3(1.900158) + sin(1.900158) - e1.900158 = - 0.040230 f'(x1) = 3 + cos(1.900158) - e1.900158 = - 4.01039 x2 = x1 - f(x1) / f'(x1) = 1.890127 \epsilon_{\text {relative }}=\frac{\left|x_{i}-x_{i-1}\right|}{x_{i}}=\frac{|1.890127-1.900158|}{1.890127}=0.005307 STEP 3 : x2 = 1.890127 f(x2) = 3(1.890127) + sin(1.890127) - e1.890127 = - 0.000383 f'(x2) = 3 + cos(1.890127) - e1.890127 = - 3.93414 x3 = x2 - f(x2) / f'(x2) = 1.890030 <img/> ...